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ABSTRACT

In this paper, we forecast the reading of an air quality monitoring
station over the next 48 hours, using a data-driven method that
considers current meteorological data, weather forecasts, and air
quality data of the station and that of other stations within a few
hundred kilometers. Our predictive model is comprised of four
major components: 1) a linear regression-based temporal predictor
to model the local factors of air quality, 2) a neural network-based
spatial predictor to model global factors, 3) a dynamic aggregator
combining the predictions of the spatial and temporal predictors
according to meteorological data, and 4) an inflection predictor to
capture sudden changes in air quality. We evaluate our model with
data from 43 cities in China, surpassing the results of multiple
baseline methods. We have deployed a system with the Chinese
Ministry of Environmental Protection, providing 48-hour fine-
grained air quality forecasts for four major Chinese cities every
hour. The forecast function is also enabled on Microsoft Bing Map
and MS cloud platform Azure. Our technology is general and can
be applied globally for other cities.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications - data
mining, Spatial databases and GIS;
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1. INTRODUCTION

People are increasingly concerned with air pollution, which im-
pacts human health and sustainable development around the world.
Many cities have built air quality monitoring stations to inform
people about urban air quality, e.g. the concentration of PM2.5
(particulate matter) and PM10, every hour. Besides monitoring,
there is a rising demand for the prediction of future air quality,
which can inform people’s decision making (e.g. whether to go for
picnic or jogging in a park) and governments’ policy making (such
as issuing pollution alerts or performing a pollution control).

DOI: http://dx.doi.org/10.1145/2783258.2788573Predicting urban air
quality, however, is very challenging for the following three
reasons: First, while urban air quality is affected by multiple
complex factors, such as traffic flow, meteorology, and land use
[11][14], we do not have sufficient and accurate data to model each
factor. For example, it is almost impossible to obtain the accurate
pollution emissions data of every vehicle and factory in a real time
manner. Likewise, weather forecasts have not been able to tell us
exactly when a wind will blow and how long it will last for.
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Second, urban air changes over location and time significantly
because of these complex factors. As shown in Figure 1 A), there
are 22 air quality monitoring stations in Beijing’s urban areas. If we
calculate the gap between the maximum and minimum AQIs (Air
Quality Indexes) of PM2.5 from these stations at the same hour, as
illustrated in Figure 1 B), about 40 percent of time slots have a gap
larger than 100, which denotes a two-level difference in pollution
(i.e. when the air quality of a location is moderate, another one is
unhealthy). Moreover, as depicted in Figure 1 C), the AQIs of three
stations change over time very differently. For instance, while the
readings of S; and S, increasing in early part of Oct. 19, 2014, that
of S5 was decreasing. So, we need to predict the air quality of
different stations (or even the different time slots of the same
station) by using different models. In other words, a general
prediction of the overall air quality in a city is not useful enough to
inform people’s decision making.

Third, there are some inflection points where air quality changes
very sharply. This may be caused by unusual weather conditions,
such as rain storms or strong winds. As such inflection instances
are very rare in observation, a general statistic model will be
dominated by normal instances, and therefore cannot predict such
inflections or sudden changes very well.
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Figure 1. Deviation between different monitoring stations’ PM2.5:
A circle shown in A) denotes a station, and its color means the level of air

pollution, as described in the bottom of the figure. The air quality of these
stations were dramatically different at 10am Mar. 13, 2014.

To address the aforementioned issues, we predict the air quality
over the next 48 hours for each monitoring station. As shown in
Figure 2, in the first 6 hours, we predict a real-valued AQI for each
kind of air pollutant, at each hour in each station. For the next 7-12,
12-24, and 24-48 hours, we predict a max-min range of AQIs at the
corresponding time interval. That is, a coarser granularity of



forecast is provided for a farther future. We continuously predict
these values every hour for each station.
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Figure 2: Format of the air quality forecasts

In our method, we train a hybrid predictive model for each kind of
pollutant at each station and in different time slots, based on the
following three types of data over a period of time: 1) The air qua-
lity at the current time and over the past few hours; 2) The meteoro-
logical data (such as humidity, temperature, and wind speed) at the
current time and over the past few hours; 3) Weather forecasts at
the future time we are going to predict. More specifically, for the
first two datasets, we need the data of the station we are going to
predict and those of other stations within a circle distance (of a few
hundred kilometers) to the station. For the first six hours, we train
a model for each hour at each station. With respect to the following
three ranges, we train a model to predict the maximum and
minimum AQIs respectively. Our contribution has four parts:

e We propose a multi-view-based hybrid model that predicts fu-
ture air quality with inaccurate and insufficient data. The mod-
el handles the spatial correlation of air quality among different
locations and the temporal dependency of air quality at a
location, using non-overlapped features and different machine
learning models. It then combines the spatial and temporal
predictions dynamically according to weather conditions.

e Theinflection predictor in our hybrid model significantly imp-
roves the capability of predicting sudden changes of air quality
caused by extreme weather conditions.

e \We evaluate our model with data from 43 cities in China, ach-
ieving a precision greater than 0.75 in the first six hours. Our
method significantly outperforms baselines when dealing with
general instances, and has a 1.5 times higher accuracy when
handling sudden drops.

e  The system has been deployed, using a framework that com-
bines the cloud with clients. The cloud is located at Microsoft
Azure, continuously collecting real-time data and forecasting
air quality. People can access the fine-grained air quality infor-
mation by using either a mobile app, called Urban Air [2], or
through a public website [1]. The technology has also been
shipped into Bing Maps China [3]. Additionally, we have
deployed the system in Chinese Ministry of Environmental
Protection, providing fine-grained air quality for the current
time and future hours to inform governments’ decision
making. The datasets have been released in [17].

The rest of the paper is organized as follows: In Section 2, we
present an overview of our system. Section 3 details the predictive
model. We evaluate our method in Section 4. Section 5 summarizes
related work. We draw conclusions in Section 6.

2. OVERVIEW

2.1 System Architecture

Figure 3 presents the architecture of our system, which consists of
three parts: External Data Sources, Cloud and Clients. The Data
Sources include a list of public websites and public/private web ser-
vices providing real-time meteorological data, weather forecasts,

and air quality data of different cities. The Cloud is based on
Microsoft Azure, hosting five major components of our system.
The Data Collector continuously collects real-time data from exter-
nal data sources, through web service interfaces or by crawling web
pages. The collected data is stored in a cloud database. For various
reasons, a few air quality monitoring stations occasionally may not
have readings; same with the meteorological data. Thus, the Data
Supplement component tries to fill the missing values in the colle-
cted data based on their spatial or temporal neighbors. The Predic-
tive Model components is comprised of a collection of models, each
of which predicts the air quality for a station and at a time interval.
The prediction results are then stored in the cloud database for the
access of the Web Service component, which provides interfaces to
two types of clients: mobile apps and websites. To have a stable
and robust system, we set a monitor to continuously check the avai-
lability of data sources and the performance of web services as well
as the status of other components.
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Figure 3. Architecture of our system

2.2 User Interfaces

Figure 4 presents the website of Urban Air [1], where an icon on
the map stands for a monitoring station and the number associated
with an icon denotes its AQI; the smaller the number is, the better
the air quality is. The color of an icon is determined in accordance
with its air quality, e.g. “green” means a “good” and “yellow” den-
otes “moderate” by Chinese AQI standards. After clicking the most
right (trend) tab on the floating tool bar, we will see a time line,
with which a user can check air quality forecasts of a specific future
time interval. Users can also check the future air quality of all stati-
ons changing over time by clicking the start button on the left termi-
nal of the time line. By clicking a specific station on the map, users
will see a pop-up chart showing a curve of air quality forecast. The
number on the top of each time segment is an accuracy of the predi-
ction measured by the data at the station in the past 48 hours. The
accuracy of a maxi-min range is measured by its mean value against
the mean value of the true range.
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Figure 4. Web user interface of Urban Air



Figure 5 presents the user interface of mobile clients. As depicted
in Figure 5 A), a user has selected four locations, such as home and
work places, to monitor on their mobile phone. Here, each banner
represents one location and the number shown in each banner is the
AQI of the location. Each location was selected by pressing and
holding the corresponding venue on a map, as shown in Figure 5B),
where an icon stands for a venue that a user has selected. Our
mobile client will automatically name a selected venue according
to the titles of POIs and road networks around the venue. Users can
then modify the name to some semantic title, such as home. By
clicking a banner in the location list, users can see not only the
historical air quality of a location in the past 24 hours but also the
forecast of next 48 hours, as illustrated in Figure 5 C).
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Figure 5. Mobile interface of Urban Air

2.3 Framework of the Predictive Model

Figure 6 presents the framework for the predictive model, consist-
ing of four components: a (local) temporal predictor, a (global) spa-
tial predictor, an inflection predictor, and a prediction aggregator.

The Temporal Predictor predicts the air quality of a station in terms
of the data about the station, such as local meteorology, AQIs from
the past few hours and the weather forecast for where the station is
located. Alternatively, we can say the temporal predictor predicts
air quality using local data, considering the prediction more from
its own historical and future conditions. Specifically, the temporal
predictor is based on a linear regression (LR), which models the
local air quality regression process.

Instead, the Spatial Predictor considers spatial neighbor data, such
as the AQIs and the wind speed at other stations, to predict a stat-
ion’s future air quality. Intrinsically, the air quality of different
locations has a spatial correlation as pollutants are dispersed from
one place to another. The Spatial Predictor is based on an artificial
neural network (ANN), modeling the spatial correlation and predict-
ing air quality from other locations’ points of view.

The two predictors generate their own predictions independently
for a station, which are combined by the Prediction Aggregator dy-
namically according to the current weather conditions of the stat-
ion. Sometimes, local prediction is more important, while spatial
prediction should be given a higher weight on other occasions (e.g.
when a wind blows strongly). As the deviation between two conse-
cutive hours” AQIs (AAQI) is usually smaller than the AQI itself,
the two predictors predict the deviation rather than the original
AQL.

There are three reasons we need to devise three separate (spatial,
temporal, and aggregator) predictors rather than a single predictor:
1) From the feature space’s perspective, the features used by the
spatial and temporal predictors do not have any overlap, providing
different views on a station’s air quality. 2) From the model’s
perspective, the spatial and temporal predictors model local factors

and global factors respectively, which have significantly different
properties. For example, the local is more about a regression prob-
lem, while the global is more about a non-linear interpolation. Thus,
they should be handled with different techniques. 3) From the
parameter learning’s perspective, feeding all features into a single
model results in a big model with many parameters to learn. How-
ever, the training data is limited. For instance, we only have one
year of AQI data for a city. Decomposing a big model into three
organically coupled small models scales down the parameter spaces
tremendously, leading to more accurate learning and therefore pre-
diction.

In some cases, e.g. when strong winds or rain storms come, the air
quality of a location drops tremendously in a short time period.
Such kind of sharp drops are hard to predict, as their presence is
very small in the entire observation. To address this issue, we pick
out such sudden drop instances to train a separate Inflection
Predictor. We also learn some conditions that significantly
differentiate these drop instances from normal cases, e.g. when the
wind speed is higher than a threshold. Once one of these conditions
holds, the Inflection Predictor will be invoked to generate a AAQI,
which will be appended to the original AQI with the output of the
Prediction Aggregator to calculate the final prediction.

As different stations are located in different environments and diff-
erent air pollutants vary by location and time, we build such a hyb-
rid model for each kind of air pollutant, at each station and for diffe-
rent time intervals. More specifically, we train a model respectively
for each hour in the next six hours, and two models for each time
interval (from 7 to 48 hours) to predict its maximum and minimum
values. All these models are re-trained every a few months in an
offline process and generate an online prediction every hour.
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Figure 6. Framework of the predictive model

3. Hybrid Predictive Model

3.1 Temporal Predictor

The temporal predictor models the trend of air quality of a station
based on four types of data: 1) the AQIs of the past h hours at the
station; 2) the local meteorology (such as sunny/overcast/cloudy/
foggy, humidity, wind speed, and direction) at the current time ¢t;
3) time of day and day of the week; 4) the weather forecasts (inclu-
ding sunny/overcast/cloudy, wind speed, and wind direction) of the
time interval we are going to predict. These features have been
proven relevant to air quality in past literature [4][11][14].

Intuitively, the current status has different degrees of impact to
different future time intervals. Thus, as illustrated in Figure 7, we
pair the inputs (shown in the broken rectangle) with the air quality
of different time intervals (t.41, tc42, -, terag) to formulate differ-
ent training sets, which are used to respectively train different mod-
els corresponding to different time intervals. Each blue broken



arrow shown in Figure 7 denotes a temporal predictor. Over the
next six hours, we train a model for each hour. With respect to the
next 7 to 48 hours, which are divided into three time intervals (7-
12, 13-24, 25-48), we train two models to predict the maximum and
minimum AQIs of each time interval respectively. This is the same
for spatial predictors which will be detailed later. The first three
parts of inputs are the same in different temporal predictors, while
the only difference between different predictors’ inputs lies in the
weather forecast (i.e. the fourth part).
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Figure 7. lllustration of the temporal predictor

A linear regression is employed to model the local change of air
quality. The categorical features are converted into numeric values,
e.g. using (0, 1) to denote (not sunny, sunny) respectively. We do
not conduct an iterative moving prediction (e.g. using the predicti-
on of t.,4 as an input to predict later hours) for two reasons. First,
the new prediction will bring errors to later rounds of prediction.
Second, a weather forecast is coarser and less accurate than current
meteorological data. Some features (e.g. humidity) are even miss-
ing in the weather forecast of many cities. Though one can capture
the general trends in air quality at a location using a regression pro-
cess, the temporal predictor has its weaknesses, e.g. it cannot well
handle sudden changes and pollution coming from other places.

3.2 Spatial Predictor

Beside local emissions, the air quality of a location also depends on
its neighbors, as air pollutants are dispersed among different loca-
tions. For example, if there are pollution emissions from a factory
that is 20 kilometers away from a station and the wind happens to
blow them towards the station, the air quality of the station will be
become bad soon after. To model spatial correlations in air quality
at different locations, we devise a spatial predictor which predicts
the air quality of a location based on other stations’ status consisting
of AQIs and meteorological data. The spatial neighbors of a station
include not only nearby stations but also the stations located in
adjacent cities. To model the impact from different locations, the
distance between the station and its neighbors ranges from a few
kilometers to several hundred kilometers. Although we do not have
first-hand pollution emission data, the stations that have been built
can be regarded as sensors sending signals to our spatial predictors.

As shown in Figure 8 A), to build a spatial predictor for a station s,
we first partition the spatial space into regions by using three circles
with different diameters. The outmost circle has the largest diam-
eter (e.g. 300km), and the innermost one has the least (e.g. 30km).
The three circles share a common center (i.e. station s denoted by
the black point) and are further segmented by four lines pointing to
different angles. We then project other stations onto the regions
bound by the line fragments and circles, according to each station’s
geo-coordinates. To simplify the model, the stations falling outside
the biggest circle are not considered in the spatial predictor. As
illustrated in Figure 8 B), we aggregate the meteorological data and
air quality readings from the stations that are located in the same
region. When a region has more than one station, we calculate the
average AQI for a given kind of air pollutant; same for temperature
and humidity. The wind direction of a region is determined by the
mode of the data. As a result, each region will only have one set of
aggregated air quality readings and meteorology, which will be fed
into the spatial predictor to predict the future air quality for s. We

conduct the same process of spatial partition and aggregation for
different stations.
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Figure 8. lllustration of the spatial predictor

The reason that we partition a spatial space into regions and then
aggregate the readings from other stations are threefold:

1) If we directly feed all the data from a station’s neighbors into a
machine learning model, the number of parameters increases quick-
ly in proportion to the number of stations. This causes a trouble for
model training and therefore prediction. Remember that we do not
have sufficient data to train a very big model. The more parameters
involved in a model, the more training data we need to find a set of
proper parameters. The partition and aggregation significantly red-
uces the number of inputs, enhancing training quality. It also sets
an upper bound for the input (no matter how many new stations will
be built in the future), as the number of regions is fixed given the
spatial partition process.

2) The information from nearby stations is somehow redundant or
even sometimes contradictory. For example, the wind directions of
two nearby stations could be opposite, as wind may be affected by
urban canyons. Without a proper aggregation, the spatial predictor
will be confused by the chaotic input.

3) The partition and aggregation carry a semantic meaning, denot-
ing different regions” impacts (to station s) varying by distance and
angle. By setting different diameters for different circles, the parti-
tion provides a coarser granularity for a farther region and a finer
granularity for closer regions. In other words, we aggregate the data
of a larger area for the regions located in a more outward ring.

As demonstrated in Figure 8 C), after the spatial partition and agg-
regation, we formulate a time series for each region with at least
one station. Other regions without stations are called empty regio-
ns, which are not considered in a spatial predictor. In the time series
(denoted as a broken-bound box), each node stands for the aggreg-
ated information of a corresponding hour. For a non-empty region
i, we extract the following features from its time series: the AQI
of the past three hours (AQI) and meteorological features (M?),
including the wind speed and direction, at the current time t.. As
depicted in Figure 8 D), AQI' and M of the non-empty regions are
fed into an artificial neural network whose output is the AQI of the
station at the specific time interval we are going to predict. In the
implementation, we predict the deviation between the AQIs of
current time t. and the future time interval t.,,,, i.e. AAQI =



AQI, — AQI,,, . because the distribution space of AAQI is much
narrower than AQI;_, . For example, Figure 9 A) presents the
distribution of AQI in Beijing in 2014, which ranges from 0 to 500.
Figure 9 B) shows the distribution of AAQI, where w=2. The
majority of AAQIs fall in a range between -100 and 100, which is
much narrower than [0, 500]. The upper bound of AAQI’s range is
[0, 500], no matter how big w is.
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Figure 9. Distributions of AQI and AAQI in Beijing

The number of layers in the neural network depends on the scale of
inputs, i.e. the number of non-empty regions, and the training data.
For example, when there are 150 features and a one-year training
dataset, we set a four-layer neural network (i.e. two hidden layers).
By pairing the same inputs with the AAQIs of different time inter-
vals we are going to predict, we train multiple spatial predictors
corresponding to different future time intervals. This occurs in a
similar fashion as with temporal predictors.

3.3 Prediction Aggregator

The prediction aggregator dynamically integrates the predictions
that the spatial and temporal predictors have made for a location.
The spatial and temporal predictors use non-overlapped features to
predict the air quality of a location, offering different points of view
(local and global) on the prediction. Sometimes, local information
is more important than global information, e.g. when the air circ-
ulation between different places is weak. On the contrary, global
dispersion may be a major factor in determining a place’s air qua-
lity, e.g. when the wind speed is very high. As a result, we consider
the current meteorology of the location, such as the wind speed,
wind direction, humidity, and sunny/cloudy/overcast/foggy, to cal-
culate a dynamic weight for the two predictions.

Specifically, we train a Regression Tree (RT) [5][9] to model the
dynamic combination of these factors and predictions. A Regres-
sion Tree can be regarded as an integration of a Decision Tree and
a Linear Regression. In general, it hierarchically partitions the data
into groups based on some discriminative features and then learns
a linear regression for each group of data in a leaf node. While the
first step of a RT is similar to a Decision Tree, a RT can handle
continuous and discrete features simultaneously. When handling
continuous features, it uses the decrease in variance (somehow sim-
ilar to information gain in a Decision Tree) in the data to determine
partition thresholds. The feature that results in the most decreases
in variance or information gain will be selected as the first node to
partition the data into two parts. The process is performed in each
part of the data iteratively, until some criteria have been satisfied,
e.g. the depth of a tree or the number of instances in a leaf node.

To train such a regression tree, we deposit the predictions generated
by the spatial and temporal predictors with the local meteorological
data of the time interval in a feature set. The feature set is then
paired with the corresponding AAQI (from the ground truth). The
spatial and temporal predictors have been trained before we start
training the prediction aggregator. Figure 10 presents a RT we train
to predict the air quality of a station in Beijing, where an ellipse
denotes a feature selected to partition the AAQIs; each square leaf
node stands for a linear model (LM) that combines different
features to calculate AAQI; the number associated with each edge

is the threshold of a selected feature. All features have been norma-

lized into [0,1]. For instance, when the value of a spatial predictor

(Spatial) is smaller than 0.003 and the temporal prediction

(Temporal) is greater than -0.08, we use LM4 to calculate AAQI.

The weights of a feature in different LMs are different. For

example, as presented in the right part of Figure 10, when wind

speed is higher than 6.62, we select LM2, which gives temporal

prediction a higher weight, to calculate AAQI. On the contrary, in

LM3, spatial prediction is given a high weight. Each station has its

own prediction aggregators that correspond to different time inter-

vals to be predicted. So, the combination of spatial and temporal

predictors changes over time and stations dynamically. The feat-

ures that are not discriminative to determine the combination are
ignored by the model automatically.

-
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Figure 10. An example of Regression Tree

3.4 Inflection Predictor

In some cases, the air quality of a location changes sharply in a few
hours, which may be caused by a strong wind or a rain storm. Being
able to predict such sudden changes is vital to informing people’s
decision making. However, the presence of such cases is very infre-
quent among entire observations; e.g. within one year of air quality
data in Beijing, the presence of sudden drop instances is less than
1.1%. As a result, to predict them becomes almost impossible for
the spatial and temporal predictors, which make a prediction based
on the majority of observations.

To address this issue, we propose an inflection predictor, which is
invoked to handle sudden changes when some criteria are satisfied.
The predictor is built by the following four steps:

Step 1. Selecting the sudden drop instances D; from historical data
D: This step can be done by selecting the instances (from all the
stations) whose AQI is bigger than 200 and decreases over a
threshold in the next few hours, e.g. 50 in the coming one hour, or
100 in the coming two hours, or 150 in the coming three hours. In
this study, we only focus on the sudden drop instances, as sudden
increases of AQI are very rare in the real world. Even if a factory
emission occurs, the air quality of the surrounding places usually
becomes worse smoothly (because the volume of sources is much
smaller than the capacity of the environment). This is also true
when a foggy day is coming. Thus, such increasing cases can be
handled by the spatial and temporal predictors. As depicted in
Figure 11 A), the selected sudden drop instances are denoted by red
points, while the rest are represented by gray points.

Step 2. Finding surpassing ranges and categories: We respectively
calculate the distribution of each feature in the sudden drop instance
set D; and the entire dataset D. By comparing the two distributions
of a feature, we find the ranges (for continuous features) or the
categories (for discrete features) whose proportion in D; is higher
than the rest of the data (i.e. D — D;). We call them surpassing
ranges and categories. For example, as shown in Figure 11 B), the
two curves denote the distributions of a continuous feature in D;
and D — D; respectively. We find that a feature’s probability in



ranges (a4, a,) and (as, a,) in D; is higher than D — D;. Likewise,
as illustrated in Figure 11 C), another discrete feature’s proportions
of category c5 and c, in D; are higher than that of D — D;. These
may suggest that the features in these ranges or categories could be
potential factors affecting sudden drop instances. Thus, some of
them may be used as thresholds to invoke the inflection predictor.
That is, once an instance has a feature’s value falling in the surpass-
ing ranges or categories, we send the instance simultaneously to the
inflection predictor (besides the spatial and temporal predictors).
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Figure 11. lllustration of building an infection predictor

Step 3: Selecting surpassing ranges and categories as thresholds.
While there are multiple surpassing ranges and categories, some of
them may not really be discriminative enough (to be a threshold) to
invoke the inflection predictor. To improve training quality, we
need to find a set of surpassing ranges and categories as thresholds,
with which we can retrieve as many instances from D; as possible
while involving the instances from D — D; as few as possible.
Formally, the problem can be defined as finding a set of surpassing
ranges (or categories) that maximizes Equation 1:
Alxq]
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Where D, = x, U x;, is a collection of instances retrieved by a set
of surpassing ranges and categories; x; < D; is a collection of
instances in D; that belong to D;; x, < (D — D;) is a collection of
instances in D, that belong to D — D;; |x| stands for the number of
instances in collection x; A|x;|= |x;| — |x';| denotes the increm-
ent of instances (belonging to D;) after adding a new surpassing
range or category; x'; is the predecessor of x,; likewise, A|x,|=
|x,] — |x',| stands for the increment of instances belonging to
D — D; after adding a surpassing range or category. The problem
can be solved by using Simulated Annealing when there are many
surpassing ranges and categories. Otherwise, we can find the most
optimal combination through a brute force search.

Step 4. Training an inflection predictor with D,: Using the thresh-
olds selected from Step 3, we can retrieve a collection of instances
D, from the entire dataset D. We then train an inflection predictor
based on D;. Note that the selected surpassing ranges and categor-
ies are only used as thresholds to control when to invoke the inflec-
tion predictor. The features used in the inflection predictor to deter-
mine the specific drop values are the same as those of the temporal
predictor. In implementation, the inflection predictor is based on a
RT, which achieves a slightly better performance than using a linear
regression, as some sudden drop instances may not follow a linear
relationship with the features used. The output of the inflection
predictor is a delta of AQI to be appended to the final result. As D,
contains instances from D — D;, the prediction could be a non-
dropping value. Thus, even when a non-sudden drop instance is
sent to the inflection point, we can still predict them correctly.

Example: Table 1 shows an example of selecting surpassing ranges
and categories based on the data of Beijing (from May 1%, 2014 to
April 301, 2015). Using the method proposed in Step 1, we find
3,184 sudden drop instances (D;) from 292,167 instances D. By
comparing the distributions of each features in D; and D, we find
six surpassing ranges and categories listed in the first column. The
second column presents the percentage of instances (retrieved by

only using a surpassing range or category) in D;. The third column
shows the percentage in D — D;. These surpassing ranges and
categories are sorted in a descending order by the ratio between the
two percentages. The fourth column denotes the third part of
Equation 1, and the fifth column presents the final score E. After
adding the surpassing ranges or categories one by one (starting
from the WindSpeed), the value of E increases until the fourth
surpassing category is added. This is also the global maximum of
E in all combinations of items shown in the first column. In the last
two columns, the values shown at the i-th row are calculated based
on the first i surpassing ranges and categories in the first column.
For example, £=0.149 is the score when selecting Wind Speed
(13.9-max), Humidity (1-40), and Downpour. In the deployed
system, we select the three surpassing ranges and category for
Beijing. As long as a coming instance has a wind speed feature
greater than 13.9m/s, and/or humidity lower than 40, and/or
downpour, the instance will be sent to the inflection predictor
(besides being sent to the spatial and temporal predictors).

Table 1. Example of selecting surpassing ranges/categories

Ranges/categories | |x,|/|D;l |x,|/|D-D;| Alxq|/Ax,] E
WinSpeed:13.9- 0.130 0.031 0.065 0.006
Humidity:1-40 0.380 0.173 0.128 0.026
Downpour 0.382 0.174 0.714 0.149
Wind Northwest 0.478 0.263 0.078 0.017
Sunny 0.643 0.405 0.084 0.020
Moderate rainy 0.680 0.437 0.087 0.020

After using our method, D, has a much higher presence of sudden
drop instances than D, leading to a quality model predicting sudden
drops online. For example, in Beijing the presence has been increa-
sed from 1.1% in D to 14.6% in D;. Note that we would never be
able to find some thresholds that can completely exclude instances
from D — D; while embracing all instances from D;. Thus, we
cannot train the inflection predictor using D; whose distribution
differs from coming instances in online predictions.

4. EVALUATIONS
4.1 Settings

4.1.1 Datasets

Air quality data: Our system collects air quality data every hour
from 2,296 stations in 302 Chinese cities. Figure 12 A) presents the
geographical distribution of these stations, where each icon stands
for a station. Each air quality instance consists of the concentration
of six air pollutants: NO2z, SOz, O3, CO, PM2.5 and PM10. We
convert these concentrations into corresponding (individual) AQIs
for each air pollutant according to Chinese AQI standards (but
without doing a 24-hour moving average over the AQIs). In total,
over 12 million air quality instances have been collected from
August 2012 to May 2015. As the cities are added into our system
at different stages, the specific time spans of the AQI data in
particular cities are different.

Meteorological data: The system collects meteorological data from
3,514 cities/districts/stations; Figure 12 B) shows these locations.
Most major cities have a district-level (or even finer) granularity
for the data, while small cities only have a city-level report. The
location of a district (or city)-level meteorological report is repre-
sented by the geographical center of a district (or a city). Each mete-
orological record consists of sunny/cloudy/overcast/foggy/snowy/
rainy, temperature, humidity, wind speed, and wind direction. Reg-
arding rain and snow, there are different levels, such as minor rain,
moderate rain, heavy rain and rainstorm. The meteorological data
updates every hour, generating 16 million instances in total until
April 301, 2015.


http://www.bing.com/dict/search?q=Simulated&FORM=BDVSP6
http://www.bing.com/dict/search?q=Annealing&FORM=BDVSP6

Weather forecasts: The system collects weather forecasts for 2,612
cities/districts. The geographical granularity of a weather forecast
is very similar but slightly coarser than the meteorological data (a
district-level at most) in some cities. We collect the forecast for the
next three days for each update, which is usually segmented into
multiple 3-hour (or six-hour) time intervals. A weather forecast for
each time interval consists of sunny/cloudy/overcast/foggy/snowy
/rainy, wind speed, and wind direction. The updating frequency of
the forecasts varies by city (some cities are updated every 3 hours;
some are 6 hours and 12 hours). In total, 203 million weather
forecasts have been recorded until April 30t 2015.
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A) Air quality stations B) Meteorological sources

Figure 12 Sources of air quality and meteorological data

In this section, we present the evaluation of 4 major Chinese cities
(Beijing, Tianjin, Guangzhou and Shenzhen) whose datasets have
been detailed in Table 2. For example, Beijing has 36 air quality
monitoring stations, 17 meteorological sources and 17 weather
forecasting sources, respectively generating 278,085 air quality
instances, 116,867 meteorological instances and 390,702 weather
forecasts from May 1%, 2014 to April 30", 2015. To predict the air
quality of the 36 stations in Beijing, 233 air quality monitoring
stations from 14 cities that are within 300km to Beijing are
retrieved. Figure 13 A) shows the geographical distribution of these
stations, which generate 1,272,979 air quality instances in the given
time span. In addition, 177 meteorological sources from the 14
nearby cities are used in Beijing’s evaluation, generating 1,006,814
meteorological instances. As the weather forecasting source is
similar to the meteorological source, we only plot the geographical
distribution of the latter in Figure 13 B).

Table 2. Some Details of Datasets

Datasets Beijing Tianjin Guangzhou Shenzhen
Timespan | poigsn | soiaso | oo | soisasn
Nearby cities 14 17 19 19
In-city stations 36 27 42 11
In-city instances 278,085 191,167 283,735 88,154
! Drop instances 3184 1945 134 8
< Ave. PM2.5 106.4 104.3 59.5 449
Neighbor Sta. 233 267 145 148
#. of instances 1,272,979 | 1,436,051 1,002,877 1,068,543
o| In-city sources 17 20 5 7
g In-city instances 116,867 106,614 30,305 55,632
| Nearby sources 177 195 115 122
= Near instances 1,006,814 | 1,108,873 626,418 665,463
| In-city sources 17 20 5 6
§ In-city instances 390,702 361,624 106,380 51,870
&| Nearby sources 184 182 110 114

In total, the data from another 39 cities has been involved in predic-
tion for the four major cities. Since PM2.5 (Particulate Matter with
a diameter smaller than 2.5 micrometers) is the most reported (and
also the most difficult-to-predict) air pollutant, we focus the evalua-

tion on PM2.5. Our method can be generally applied to other pollu-
tants and countries. We partition the data into non-overlapped
training and test data by a ratio of 2:1. For example, we select the
data in March, June, September and December as the test set, and
the other months as the train dataset. The data set has been released
to the public in [17].

A) Nearby AQI stations for Beijing B) Meteorological sources for Beijing
Figure 13. Geo-distributions of the data sources for Beijing

Figure 14 shows the distributions of PM2.5’AQIs in the four cities,
where the six AQI spans are defined by Chinese standards, respecti-
vely corresponding to Good, Moderate, Unhealthy for Sensitive
Group, Unhealthy, Very unhealthy and Hazardous. As Beijing has
the biggest population and the most complicated air quality, we
focus on Beijing’s data when comparing with different baselines,
while showing overall results for the other three cities.

[ Beijing
Tianding
] Guangzhou
Shenzhen

Proportion

0-50  51-100 101-150 151-200 251-300 301-500
AQI
Figure 14. Distributions of AQI in PM2.5

4.1.2 Metrics and Ground Truth
We predict the air quality of a station as we can obtain the ground
truth from its later readings. For the next 1-6 hours, we measure the
prediction of each hour ¥, against its ground truth y;, calculating
the accuracy according to Equation 2. With respect to the next 7-
12, 13-24, 25-48 hours, we measure the mean of the predicted
maximum and minimum values against the mean of the truth AQIs
during the interval. As a result, we generate an accuracy for the four
time intervals respectively at each station. We also calculate the
absolute error of each time interval according to Equation 3, where
n is the number of instances measured for a time interval.
Zily—vil.
p=1 Yivi @)
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e===— (3)
We aggregate the accuracy of the same time interval from all the
stations in a city into a final result for the city. Finally, a city will
have four overall accuracies and four absolute errors in 1-6, 7-12,
13-24, and 25-48 hours.

4.1.3 Baselines
We compare our method, entitled FFA (TP+SP+PA+IP), with four
sets of baselines:

1) ARMA: Auto-Regression-Moving-Average (ARMA) is a well-
known model for predicting time series data. ARMA predicts the
air quality of a station solely based on the AQIs of the station. This



baseline justifies the advantages of using weather forecasts and
meteorological data.

2) This set of baselines feeds all features into a single model, e.g.
linear regression (LR_ALL), neural network (ANN_ALL), and regr-
ession tree (RT_ALL), without treating different features differen-
tly. Defining these baselines is to justify the advantages of using a
combination of multiple models. As LR, RT and ANN have also
been used in environmental science to predict air quality [4][5][6],
surpassing this set of baselines also justifies our contribution over
traditional approaches.

3) This baseline applies the classical weather forecasting model
(WFM) to predict air quality. The results of WFM is generated by
the Beijing Municipal Environmental Monitoring Center, publish-
ed at http://zx.bjmemc.com.cn/ at 8am and 8pm every day.

4) The fourth set of baselines justifies the necessity of each
component of our method. For example, if we do not use the
inflection predictor (IP), or the prediction aggregator (PA).

4.2 Results

4.2.1 Results of Temporal Predictors

We first check if the features we feed into the temporal predictor
are really useful. As shown in Table 3, by adding AQIs from the
past three hours (A), time of day and day of the week (T),
meteorological features (M), and weather forecasts (F) step by step,
we see a clear improvement on the accuracy p and a decrease on
the absolute error e at every future time interval we are going to
predict. The results are generated by solely applying the temporal
predictor to the test instances.

Table 3. Results of the temporal predictor in Beijing

Time 1-6h 7-12h 13-24h 25-48h
Features 14 e 14 e p e p e
A 0702 | 28 | 0515 | 63.9 | 0.449 | 70.0 | 0.448 | 685
A+T 0.706 | 27.7 | 0519 | 63.3 | 0.443 | 70.8 | 0433 | 703
A+T+M 0711 | 27.2 | 0548 | 59.4 | 0.470 | 67.4 | 0.442 | 69.2
A+T+M+F | 0713 | 27.0 | 0560 | 57.9 | 0.477 | 665 | 0.461 | 66.8

4.2.2 Results of Spatial Predictors

Table 4 presents the results of the spatial predictors respectively
using (ANN_Par) and without using (ANN_Raw) the spatial parti-
tion and aggregation. According to the results of 7-12, 13-24, 24-
48, the spatial partition and aggregation significantly improves the
performance of the spatial predictor.

Table 4. The results of the spatial predictor in Beijing

Time 1-6h 7-12h 13-24h 25-48h
p e p e p e p e
ANN_Raw 0.693 36.9 0.482 88.1 0.409 98.3 0.318 109.8
ANN_Par 0.742 243 0.587 54.4 0.471 67.3 0.384 76.4

Without this process, there are too many inputs for an ANN, leading
to too many parameters in the model. Consequently, we cannot
learn a set of accurate parameters for the ANN based on the limited
training data. Additionally, the computational load of ANN_Raw is

very heavy due to a large number of parameters involved. We also
tested a linear regression model in the spatial predictor. In general,
LR has a similar performance in predicting normal instances but
less effective (2% lower) than ANN in dealing with sudden drops.

4.2.3 Results of Prediction Aggregator

The results presented in Table 5 justify the advantages of the
prediction aggregator (PA) which combines the predictions
generated by the spatial and temporal predictors (TP+SP+PA).
This table aggregates the accuracies and absolute errors of four
different time intervals. First, PA improves the performance of
individual spatial and temporal predictors, particularly in predicting
sudden drop instances. Second, the combination of (TP, SP, PA)
outperforms the second set of baselines: LR_ALL and ANN_ALL,
which feed all features into a single model (LR or ANN).

Table 5. The results of prediction aggregator in Beijing

All Instances Sudden Drops
Methods

14 e 14 e
Temporal Predictor (TP) 0.642 39.2 -0.314 125.2
Spatial Predictor (SP) 0.655 38.2 0.116 85.8
LR_ALL 0.667 36.7 0.015 94.4
ANN_ALL 0.647 39.0 0.150 82.0
TP+SP+PA 0.670 36.4 0.173 80.5

4.2.4 Results of Inflection Predictors

We learn the thresholds for the inflection predictor (IP) from the D;
of the entire dataset. The surpassing ranges and categories on the
first three rows of Table 1 are selected as thresholds for Beijing.
We then use these thresholds to find D, from the training set and
the test set respectively. As a result, 4,768 instances are used for
training and 2,933 for testing, generating the results shown in Table
6. We find RT outperforms LR in predicting the sudden drops when
used individually and in conjunction with TP+SP+PA. The IP also
brings significant improvement over TP+SP+PA. The results of
sudden drops in Table 5 are based on D; while Table 6 is derived
from D,. Some drop instances are not retrieved by the thresholds.

Table 6. Results of the Inflection Predictor in Beijing

) Individually TP+SP+PA+IP
Metrics R RT R RT TP+SP+PA
p 0.001 0.025 0.253 0.262 0.125
e 87.7 86.15 72.1 72.9 77.8

4.2.5 Overall results

Table 7 presents the overall results of different methods, where our
method FFA outperforms all the baselines. ARMA-2 means an
ARMA considering the recent 2 hours for a moving average. First,
the meteorological data and weather forecasts bring improvements
to air quality prediction. Second, as compared to LR_ALL and
ANN_ALL, our method has a stronger capability of predicting the
air quality of farther future and the sudden drops. The results justify
the contribution of using a combination of three components rather
than feeding all the features into a single model. The results also

Table 7. Comparison among different methods: in Beijing

Time 1-6h 7-12h 13-24h 25-48h Sudden Changes
Methods P e p e P e p e p e
AMRA-2 0.663 40.4 0.499 84.2 0.371 104.4 0.2 128.8 -0.622 179.1
AMRA-6 0.607 46.9 0.475 88.0 0.365 105.3 0.203 128.0 -0.523 170.6
LR_ALL 0.744 24.1 0.594 53.4 0.496 64.1 0.449 68.3 0.015 94.4

ANN_ALL 0.733 25.2 0.586 54.4 0.457 69.0 0.383 76.4 0.150 82.0
TP+SP+PA 0.75 23.6 0.601 524 0.498 63.9 0.444 69 0.173 80.5
FFA (TP+SP+PA+IP) 0.749 23.7 0.601 52.4 0.498 63.9 0.444 69 0.262 721




show that ANN is more capable of dealing with sudden changes
than LR. In many real-world problems, we may not be able to get
sufficient data to train a big model. Thus, a deep understanding of
the data and the merit of different kinds of models is important.
Third, the inflection predictor does not comprise the performance
of our method, while significantly enhancing our method’s capab-
ility of predicting sudden changes.

In Table 8, we compare our method FFA with WFM, which uses a
weather forecasting model to predict air quality, during the time
span: September 15t 2014 to April 30t 2015. The Beijing Municipal
Environmental Monitoring Center (using WFM) only provides a
district-level forecast for the next 12 hours, updating the forecast
twice a day at 8am and 8pm. So, FFA has more accuracy predic-
tions with a finer granularity and a farther forecasting period over
WFM. In addition, FFA can update every hour, which indicates less
online computational cost than WFM.

Table 8. Compare FFA with WFM in Beijing

1-6 hours 7-12 hours Update | Grained
Methods
p e p e Hours Level
FFA 0.839 33.4 0.795 60.0 1 Station
WFM 0.761 49.6 0.777 65.3 12 District

Table 9 details the average absolute error at different time intervals
and in different AQI ranges. For example, when predicting the air
quality of the next 1 to 6 hours, the average absolute error for the
air quality whose AQI falls in the range of [0, 50] is 17.5. Regarding
the instances whose AQI falls into 50-100, the average absolute
error is 21.2. According to the values shown in the last row, we can
achieve an absolute error less than 38 when the real AQI is under
200. As the training instances falling into 300-500 are very small
(refer to Figure 15), the error is relatively high in the range of [300-
500].

Table 9. Average absolute error in different AQI ranges

Time 0-50 50-100 | 100-150 150-200 | 200-300 | 300-500
1-6 17.5 21.2 23.9 29.5 38.9 61.6
7-12 43.4 45.2 44.2 50.0 62.2 105.2
13-24 68.5 47.8 459 56.5 78.1 141.1
25-48 100.3 56.3 40.9 51.8 86.3 181.8
Total 35.2 30.7 30.5 37.3 51.1 88.6

Table 10 presents the results of our method in Beijing, Tianjin,
Guangzhou and Shenzhen. Our method has a better performance in
the latter two cities, as their air quality falls drastically in the range
of [0,150] (see Figure 14) and the number of sudden changes is
much smaller than Beijing and Tianjin (refer to Table 2). In short,
their air quality is easy to predict. In such kinds of cities, our
method does not show clear advantages beyond TP+SP+PA. We
also compare our method with different baselines based on
Tianjin’s data, finding a similar trend there.

Figure 15 A) shows the prediction of our method at the next 6™ hour
against the ground truth in Beijing from Sep. 1, 2014 to Sep. 30,
2014. Figures 15 B), C) and D) present those of Tianjin, Guangzhou
and Shenzhen. In general, Beijing and Tianjin have much more
complicated air quality (changing over time) than Guangzhou and
Shenzhen. Our model is very accurate in tracing the ground truth
curves (including sudden changes) in the four cities. Figure 15 E)
presents the average of the maxi-min predictions of our method for
the next 7-12 hours against the ground truth (i.e. the gray area).

4.2.6 Efficiency and Resources

Table 11 presents the resources we use on the cloud (MS Azure) to
enable the forecasting service. It also shows the time consumed by
each component of our method to predict the air quality for a station

at a time interval. On average, our method can generate a prediction
in 3ms, finishing the forecast of the next 48 hours for a station in
36ms (recall that we have 12 models: 6 for the first six hours, 2 for
each of the three time intervals). Given such a configuration, our
service can answer over 40,000 request per hour. By adding more
instances for the Azure Website, we easily upgrade our service to
answer more queries.

Table 11. Configuration of Cloud and inference performance

Services Configurations Models | Time (ms)
Azure S2 Standard (2 cores, 3.5G Memo) Feature 1.778
WebSite 3 instances P 0.010
Cloud Al (1 core, 1.75 GB Memory) SP 0.108
Service 1 instance PA 0.247
Database Standard SO (10 DTUSs) IP 0.508
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Figure 15. FFA’s Predictions against ground truths

5. RELATED WORK

Existing air quality prediction methods in Environmental Science
are usually based on classical dispersion models, such as Gaussian



Table 10. Overall results of our method in four major cities of China

Time 1-6h 7-12h 13-24h 25-48h Sudden Changes
Cities p e p e p e p e p e
Beijing 0.749 23.7 0.601 52.4 0.498 63.9 0.444 69 0.262 72.1
Tianjin 0.754 24.2 0.63 50.1 0.582 54.7 0.578 54.2 0.395 66.5
Guangzhou 0.797 11.3 0.717 22.4 0.676 25.2 0.644 275 0.572 45.9
Shenzhen 0.832 75 0.753 15.7 0.72 17.7 0.7 18.9 0.791 18.3

Plume models, Operational Street Canyon models, and Computa-
tional Fluid Dynamics [11]. These models are in most cases a fun-
ction of meteorology, street geometry, receptor locations, traffic
volumes, and emission factors (e.g. g/km per single vehicle), based
on a number of empirical assumptions and parameters that might
not be applicable to all urban environments [11]. As these para-
meters are difficult to obtain precisely, the results generated by such
kinds of models may not be very accurate [14]. We instead use a
data-driven method to predict air quality rather than empirical
model-based approaches.

Over the past decade, some statistic models, like linear regression,
regression tree [5][9] and neural networks, have been employed in
atmospheric science to do a real-time prediction of air quality [4][6]
[71[12][13]. However, these methods simply feed a variety of
features about a location into a single model to predict the future
air quality of the location. Our method is distinguished from these
approaches in three ways. First, besides the data of the location we
predict, we also incorporate the data from other spatial neighbors
(e.g. nearby stations), which send signals to the predictive model
thereby significantly improving prediction accuracy. Second, we
feed different data sources into different models, capturing the
spatial correlation of air quality in different locations and the
temporal dependency of air quality in a location simultaneously.
These models are then aggregated organically to provide a more
accurate prediction than solely feeding all the data into a single
model. Third, our method is more capable of forecasting sudden
changes in air quality than these other simple approaches. Being
able to predict sudden changes is vital to informing people’s decis-
ion making, but very difficult given such little presence in the entire
body of observations.

More recently, there has been a trend of applying big data to solve
urban challenges in the form of urban computing [15]. For example,
in 2013, we used big data to infer the real-time and fine-grained air
quality throughout an entire city [14][16]. Hsieh et al. [8] suggested
the locations for air quality monitoring stations based on big data.
Shang et al. [10] used GPS trajectories of sample of vehicles to infer
the city-wide vehicular emissions. However, none of these
technical works is concerned with forecasting air quality.

6. CONCLUSION

In this paper, we report on a real-time air quality forecasting system
that uses data-driven models to predict fine-grained air quality over
the following 48 hours. The system is based on a framework that
connects the cloud with clients, collecting air quality, meteorologi-
cal data and weather forecasts from over 3,000 sources (e.g. stations
[districts/cities) in China. The mobile client, entitled Urban Air, and
the website are public available at [1] and [2]. The forecasting func-
tion has also been deployed on Bing Map China at [3]. The system
has also been deployed with the Chinese Ministry of Environmental
Protection. We evaluate our predictive method with data from 43
cities, presenting the results of four major cities: Beijing, Tianjin,
Guangzhou and Shenzhen. By combining four major components,
consisting of temporal predictor, spatial predictor, prediction aggr-
egator, and inflection predictor, our method outperforms four sets
of baselines significantly, including the baseline approach using

weather forecasting models to predict air quality. In general, our
method can achieve an accuracy of 0.75 for the first 6 hours and 0.6
for the next 7-12 hours in Beijing. It predicts the sudden changes of
air quality much better than baseline methods. With a very light
resource strain on the cloud, on average, our method can generate
predictions for the following 48 hours for a station in 36ms.
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