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Abstract—Delivery locations are fundamental data source for
intelligent logistics, which can be used in route planning, arrival
time estimation, parcel allocation, etc. Using the Geocoded way-
bill location of an address as the delivery location is not sufficient,
due to wrong address parsing, coarse-grained POI database, or
different preferences of customers. To mitigate the insufficiency
of Geocoding, some methods have been proposed, which utilize
couriers’ locations when waybills are confirmed to be delivered
for delivery location inference. Nevertheless, these methods highly
rely on the quality of couriers’ annotations and fail when
couriers confirm deliveries with delays. We propose to infer actual
delivery locations of addresses from couriers’ trajectories. This
idea lies on an observation that the semantics of delivering
a parcel are well captured by couriers’ trajectories (e.g., a
stay point would be generated when a delivery occurs), which
holds even couriers confirm deliveries with delays. Specifically,
we design Delivery Location Inference under Mis-Annotation
(DLInfMA), which (1) generates location candidates from stay
points in couriers’ trajectories; (2) extracts features from both
an address and its location candidates; and (3) uses an attention-
based neural network model LocMatcher to predict the delivery
location for each address. Experiments on two real-world datasets
from JD Logistics as well as synthetic datasets demonstrate the
effectiveness, robustness and scalability of DLInfMA. We also
present a deployed system along with two applications based on
DLInfMA.

Index Terms—trajectory data mining, volunteered geographic
information, toponym resolution

I. INTRODUCTION

Express delivery is the main solution to the “last mile”
problem in logistics industry. A typical scenario of express
delivery is that a courier is assigned with a batch of waybills,
each for a parcel and with a shipping address, and needs to
send the parcels to their destinations according to the waybills’
addresses. Those destinations are called delivery locations,
each of which can be a doorstep (Figure 1(a)), an express
locker which is the parcel storage hub in the neighborhood
(Figure 1(b)) or the reception of a residence (Figure 1(c)).

Accurate delivery location knowledge for each address is
fundamental for logistics. It not only provides accurate
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(a) Doorstep. (b) Express Locker. (c) Reception.

Fig. 1. Examples of Delivery Locations.

destinations to couriers for delivery references, but also is one
of the most important data sources for downstream intelligent
applications for business boosting, e.g., route planning [1]
and prediction [2], arrival time estimation [3], and parcel
allocation [4].

To find the delivery location of an address, a straightfor-
ward approach is to use its Geocoding 1 result. Nevertheless,
Geocoded locations may not always be accurate due to wrong
address parsing, coarse-grained POI database, etc. Further-
more, couriers may deliver a parcel to a doorstep, to an express
locker, or to a reception based on the customer’s preference,
which cannot be uniformly captured by the Geocoded location
of the address in the waybill.

To solve these issues, [5], [6] proposed to infer the delivery
location of an address based on historical deliveries. This
is possible since after delivering each parcel to an address,
the courier is supposed to confirm the delivery, with which a
location would be annotated. Then, it is intuitive to infer the
delivery location of the address based on the annotated loca-
tions. Specifically, [5] estimates the spatial centroid of those
annotated locations as the delivery location. [6] considers all
annotated locations as candidates of the delivery location, and
leverages a supervised learning approach to select one of the
annotated locations as the delivery location. However, these
methods highly rely on the quality of the annotated locations,
and in cases of mis-annotated locations (which are common
since couriers delay the confirmations of deliveries quite
often), they would fail. To illustrate, consider the example
in Figure 2(a). Suppose that the three historical deliveries

1https://en.wikipedia.org/wiki/Geocoding



Delivery Records of addr1

Annotated Locations Delivery Location

(a) Annotation-Based Discovery.

Delivery Trips addr1 is Involved in

Stay Point

Confirm

Confirm

Confirm

Delivery Trips Delivery Location

(b) Traj.-Based Discovery (Ours).

Fig. 2. Annotation-Based V.S. Trajectory-Based Discovery.

to addr1 are confirmed with delays. In this case, neither the
spatial centroid (used by [5]) nor one of the annotated locations
(used by [6]) is the actual delivery location.

Fortunately, we observe that in cases of mis-annotated
locations, we can still infer the actual delivery locations with
couriers’ trajectory data. This is because when a courier delays
the confirmation of a delivery to an address, while the delivery
location is not the annotated location, it must be some location
that has been traversed by the courier and could be inferred
from the courier’s trajectory (specifically, the portion before
the time when the courier confirms the delivery2). Specifically,
we can extract stay points [7] from the trajectory as candidates
of the delivery location, since a delivery would usually cause
a staying behavior of the courier.

To illustrate, consider the example in Figure 2(b). Since
addr1 is involved in 3 delivery trips, we can extract stay points
(denoted as the blue circles) before the deliveries to addr1 are
confirmed, each of which can possibly be the actual delivery
location. In addition, the delivery location is more likely to be
within one of regions marked with black dashed circles (since
they are all involved in all 3 trips).

However, to implement the above idea, there are two
challenges:
1) Redundant candidates: Stay points in different trips could

have minor location discrepancy even if they represent
the same location in real world. The redundant candidates
would increase the difficulty of the delivery location infer-
ence task.

2) Complex decisions: Deciding the delivery location is com-
plex and challenging. To illustrate, consider Figure 2(b).
There is no clear clue which of those black dashed circles
is more likely to be the delivery location.

To solve the above challenges, in this paper, we propose a
delivery location discovery method called Delivery Location
Inference under Mis-Annotation (DLInfMA) for cases where
the delivery times may be recorded with delays. It mainly
consists of two steps: (1) To mitigate the issue of redundant
candidates, it generates a pool of candidates of delivery
locations (called location candidates) as clusters of those stay
points extracted from couriers’ historical trajectories. Once a
pool of location candidates is generated, we can easily filter for

2Delayed confirmations occur much more frequently than fake deliveries
meaning that couriers confirm the deliveries before they actually happen. The
latter would cause severe punishment to the courier.

an address a set of location candidates, and the actual delivery
location should be in the set; (2) To solve the complex decision
problem, it first extracts several key features from both an
address and its filtered location candidates, e.g., the occurrence
of a location candidate when delivering for the address, and
the uniqueness of a location candidate to the address. Then
an attention-based selection model LocMatcher is proposed to
predict the actual delivery location of an address, which jointly
considers its location candidates.

The main contributions are summarized as follows.
• We propose to leverage couriers’ trajectories for the delivery

location inference problem with deliveries confirmed with
potential delays, which cannot be well handled by existing
annotation-based solutions (Section II).

• We propose a method, namely DLInfMA, which first gen-
erates location candidates of an address, and then uses
an attention-based model LocMatcher to infer the delivery
location (Section III and IV).

• Extensive experiments on two large scale real-world datasets
from JD Logistics as well as six synthetic datasets show
the effectiveness, robustness and scalability of DLInfMA.
It outperforms the best baselines by 4%-10% in the most
competitive metric and can infer 1K addresses/s (Section V).

• We present the deployed system based on DLInfMA and
also two application scenarios on top of the system, namely
route planning and customer availability inference, which
are both used internally in JD Logistics (Section VI).

II. OVERVIEW

A. Definitions

Definition 1 (Waybill). A waybill contains the information
about the delivery of a parcel, which is denoted as a 3-tuple
w = (addr, tre, td). addr is the address, tre is the time when
a courier received the parcel, and td is the recorded delivery
time, which can be significantly delayed.

Definition 2 (Delivery Location). A delivery location is a
spatial point, denoted as ld = (x, y), at which a courier drops
off the parcel.

Definition 3 (Trajectory). A trajectory is a sequence of
spatio-temporal points generated by a certain courier, denoted
as T =< p1, p2, ..., p|T | >, where each point p = (x, y, t)
indicates the physical appearance at a location (x, y) at time
t. Points in a trajectory are organized chronologically, namely,
∀i < j : pi.t < pj .t.

Definition 4 (Stay Point). A stay point is a subsequence
of a trajectory, which semantically means that a mov-
ing object stays in a geographic region for a while.
Formally, given a distance threshold Dmax and a time
threshold Tmin, < pi, pi+1, ..., pj > is called a stay
point sp if distance(pi, pk) ≤ Dmax(∀k ∈ [i + 1, j]),
distance(pi, pj+1) > Dmax (if j+1 ≤ n), and |pj .t−pi.t| ≥
Tmin. The time of a stay point sp is defined as the middle
point of its time interval, and the location of sp is defined as
its spatial centroid.
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Definition 5 (Delivery Trip). A courier delivers a batch of
parcels to customers in a delivery trip, which is denoted as
tr = (ts, te, T,W ), where ts is the start time, te is the end
time, T is the courier’s trajectories during tr, and W is the
set of waybills delivered in tr.

Problem Definition. Given a set of delivery trips TR, for each
address addr ∈ A, where A = {w.addr|w ∈

⋃
tr∈TR tr.W},

the problem is to infer its delivery location ld.
In our datasets, we found addresses in the same building

could have different delivery locations. Therefore, we choose
the delivery location inference at the address level. But our
solution can also be easily adapted to building-level inference.

B. Framework

The framework of DLInfMA is presented in Figure 3, which
takes historical delivery trips of couriers as input, and gives
the delivery location inference result of each address. The
inferred delivery locations are used for various downstream
applications, e.g., route planning and customer availability
inference, which would be introduced in Section VI. DLInfMA
consists of the following two components:
Location Candidate Generation. This component takes tra-
jectories and waybills of all delivery trips as inputs, and
performs three main tasks: (1) Stay Point Extraction, which
extracts stay points from trajectories; (2) Candidate Pool
Construction, which generates a pool of delivery location
candidates based on stay points; and (3) Location Candidate
Retrieval, which retrieves the delivery location candidates for
each address in its involved trips (detailed in Section III).
Delivery Location Discovery. This component selects for
each address, the best matched location as the inferred delivery
location among all its delivery location candidates. Two main
tasks are performed: (1) Feature Extraction, which extracts
features from an address and its corresponding location can-
didates; and (2) Address-Location Matching, which infers the
delivery location of an address leveraging an attention-based
model (detailed in Section IV).

III. LOCATION CANDIDATE GENERATION

In this component, we aim to obtain for each address its
delivery location candidates. First, stay points are extracted
from trajectories. Then, all stay points are clustered to generate
a pool of location candidates. Finally, for each address, we

retrieve its delivery location candidates based on the trips
involving it and its recorded delivery times.

A. Stay Point Extraction

This step extracts stay points from couriers’ trajectories.
Two operations are performed sequentially: (1) noise filter-
ing, which filters noisy GPS points with a heuristics-based
method [8] to improve the quality of stay point extraction; (2)
stay point detection [7], which detects stay points from cleaned
trajectories based on Definition 4. We set Dmax = 20m and
Tmin = 30s, same as [5].

B. Candidate Pool Construction

In this step, we aim to obtain a pool of delivery location
candidates based on all stay points of couriers. Due to sensing
errors, locations of stay points could have minor discrepancy
from each other even if they represent the same location in
reality. Therefore, we perform clustering over stay points, so
that each location can be uniquely represented and serve as a
delivery location candidate. In addition, we extract profiles of
each location generated based on stay points, and use these
profiles in the delivery location discovery component.

Clustering methods such as k-Means [9], DBSCAN [10],
OPTICS [11], grid merging [12] have been adopted for gen-
erating locations from stay points. In this paper, we adopt
the hierarchical clustering [13] to generate delivery location
candidates, which enjoys following advantages. (1) It requires
only a distance threshold D to control how many locations to
be generated, which is easier to set (compared with the number
of clusters required in k-Means and the density required in
density-based methods). (2) It returns clusters that are more
suitable to describe delivery locations (compared with irregular
cluster shapes generated by aforementioned methods). (3) It
does not require to discretize the urban space (as the grid
merging method).

The hierarchical clustering first treats each stay point as a
cluster, then iteratively merges two clusters whose centroids
are the closest to each other to form a new cluster, until
there does not exist two clusters such that the distance of
their centroids is smaller than D. The centroid of each cluster
is treated as a location candidate. Furthermore, for better
efficiency, we generate location candidates based on stay
points in a bi-weekly manner and then merge the newly
generated location candidates with existing ones with the same
clustering process.

Figure 4 gives an example of the candidate pool construc-
tion. The blue points in Figure 4(a) are stay points generated
from couriers. They are merged into different clusters using
the hierarchical clustering (D = 40m), which are shown
in different colors in Figure 4(b). And the centroid of each
cluster (a grey triangle) corresponds to a generated location
candidate.

Additionally, we use the stay points in each cluster to
generate profiles of the location, which are useful for the
following location inference task. The profiles include: (1) Av-
erage duration, which is the average stay duration of stay
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Fig. 4. Examples of Candidate Pool Construction.

points. The duration of a delivery location should be neither
too long nor too short. (2) Number of couriers, which is the
number of couriers who have visited the location. The delivery
tasks in a certain region are usually assigned to the same
courier. Thus, it is unlikely that a delivery location is visited
by many couriers. (3) Time distribution, which is the time
distribution of couriers visiting the location. We discretize the
time interval [8:00,23:00) into hourly timeslots, and calculate
the visiting time distribution. The active timeslots of delivery
locations and those of other locations can be different.

C. Location Candidate Retrieval

In this step, we want to retrieve for each address the delivery
location candidates using trips involving it and recorded deliv-
ery times of waybills. It is based on the observation that the
recorded delivery time provides a temporal upper bound to
filter out impossible location candidates. Specifically, a stay
point which has the time later than the recorded delivery
time and its corresponding location candidate cannot be the
delivery location. Figure 5 gives an example of retrieving
location candidates of address addr1. Suppose parcels with
address addr1 are involved in trips tr1, tr3 and tr5. The text
“Confirm” indicates the (recorded) delivery time of the parcel,
which might involve some delay. Therefore, in each trip that
addr1 is involved in, we only consider the location candidates
with the time (of a stay point) no later than the recorded
delivery time. The delivery location candidates of addr1 is
the union of candidates in all trips that addr1 is involved in,
i.e., {l1, l2, l3, l4, l5, l6}. Note that we do not exclude locations
that are visited by some but not all trips (e.g., l2 and l5) with
the GPS noises taken into consideration.

IV. DELIVERY LOCATION DISCOVERY

In this component, we infer the delivery location for each
address based on its location candidates. We first extract
features from each address and its location candidates, and
then use an attention-based model to match each address to
its most probable delivery location.

A. Feature Extraction

For each address, this step is to extract features from the
address and its location candidates. We extract three types
of features based on each address addrj and its location
candidates:

tr1 tr5tr3

Confirm

Confirm

Confirm

Start l7

l8

addr1 Involved Trips Location 
Candidates 
of addr1

l1

l1
l2

l2l3
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Fig. 5. Illustration of Location Candidate Retrieval.

(1) Matching Features. The matching features are related
to the interactions between the location candidate and the
address.
• Trip coverage: The trip coverage TCi,j is defined as the

fraction of trips that pass through the location candidate
li, among all trips that involve a waybill with the address
addrj . Formally, it is defined as follows.

TCi,j =

∑
tr∈TRj

1(li ∈ Ltr)

|TRj |
(1)

where TRj is the set containing all trips that involve a
waybill with the address addrj , Ltr is the set of location
candidates that are passed by the trip tr, and 1(·) is an
indicator function judging whether the condition is held.
Intuitively, a larger TCi,j implies that li should be inferred
as the delivery location of addrj with higher confidence.
For example, as shown in Figure 5, addr1 is involved in
three trips. l1, l3 and l4 are visited by all the three trips,
and thus their trip coverage are both 3/3 = 1. l2 is visited
by two trips, and thus its trip coverage is 2/3.

• Location commonality: While the trip coverage captures the
co-occurrence of a location candidate and an address, it does
not distinguish/penalize those cases where the location can-
didate is visited by many other trips that do not involve the
address. To mitigate this issue, we introduce the “location
commonality” feature. We denote the building of addrj as
B(addrj)

3. The location commonality LCi,j is defined as
the fraction of trips that pass through the location candidate
li, among all trips that do not involve any address whose
building is the same as B(addrj). Formally, it is defined as
follows.

LCi,j =

∑
tr∈TR\TRB(addrj)

1(li ∈ Ltr)

|TR \ TRB(addrj)|
(2)

where B(addrj) is the building of addrj , TRB(addrj) is
the set of trips that involve an address sharing the same
building with addrj , and Ltr is the set containing all
location candidates that are passed through by the trip tr.
Intuitively, a larger LCi,j implies that the li should be
inferred as the delivery location of addrj with lower con-
fidence. Note that we count the trips that do not involve

3The building is extracted from a commercial address segmentation and
tagging tool.



tr1 tr2 tr3 tr4 tr5

l1

l3

2/2=1

0/2=0

LCi,1B(addr1)

Trips

Fig. 6. Illustration of Location Commonality (a correct mark (resp. a wrong
mark) means a building or a location is (resp. is not) involved in a trip).

B(addrj) instead of addrj since otherwise when there are
many trips that involve B(addrj) but not addrj and these
trips also pass through li, it should be treated as a non-
negative signal that li is the delivery location of addrj
but LCi,j would be high (which corresponds to a negative
signal).
For example, apart from the three trips tr1, tr3 and tr5
shown in Figure 5, we consider two additional trips tr2
and tr4 which do not involve an address whose building
is B(addr1). Suppose tr2 and tr4 involve l1 but not l3.
Figure 6 summarizes the information of how trips involve
B(addr1) and locations l1 and l3. Consider locations l1 and
l3. They have the same trip coverage, both equal to 1, but
different location commonalities, the former equal to 2/2=1
and the latter equal to 0/2=0, indicating that l1 has a lower
chance to be the delivery location of addr1 compared to l3.

• Distance: The distance is the geographical distance between
li and the Geocoded location Gj of addrj . Though Gj

may not be close to the actual delivery location, it roughly
determines the local community based on the address, thus
can help filter some locations that are far away, since they
are highly unlikely delivery locations.

(2) Profile Features. The profile features are the property
of a location, which is detailed in Section III-B. There are
three features: Average duration, Number of couriers and Time
distribution.
(3) Address Features. The address features are the inherent
property of the address, which is irrelevant to locations.
• Number of deliveries: It is the number of trips that the

address addrj is involved in. If the number of deliveries
is larger, the trip coverage feature is more reliable.

• POI category: It is returned along with the Geocoded
location by Geocoding. There are 21 categories (e.g., a
company), which influence the average stay duration at a
location.

B. Address-Location Matching

This step is to use a model to find for an address its
delivery location among location candidates based on extracted
features.

One approach is to concatenate three types of features
and train a binary classification model to predict whether
each individual location candidate is the delivery location of
the address, and during the inference phase, we select for
each address the location candidate with the highest score

(a) Classification-based. (b) Pairwise Ranking-based. (c) Attention-based (Ours).
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as the delivery location, which is illustrated in Figure 7(a).
This method independently classifies each location candidate,
while the relationship among candidates, e.g., the ranking
of average duration and the ranking of trip coverage, is not
considered. Another approach is to formulate the delivery
location inference as a location ranking problem, where a
pairwise ranking strategy is commonly used [6], [14], [15].
As shown in Figure 7(b), the ranking model predicts the
partial order of a pair of location candidates. In order to infer
the delivery location, the location candidate which wins the
most number of comparisons in a voting manner is selected.
However, there actually does not exist an order between
negative location candidates in our problem setting, and the
ordering is more than necessary since we only care about the
actual delivery location.

Then a natural question is whether we can consider all
location candidates jointly at once by feeding them to a single
model as shown in Figure 7(c). One of the major challenges to
implement this idea is that for different addresses, the number
of location candidates is varying (which is different from the
case of pairwise ranking-based methods, which always takes
two location candidates).

We borrow the idea from natural language processing
(NLP), which always accepts sentences with varying numbers
of words as input using RNN [16] or Transformer [17]. Here,
we adopt Transformer encoder for the correlation modeling
for two reasons: 1) there is no temporal dependency among
location candidates; 2) the number of location candidates of
an address might be very large, and it is challenging for
RNN to capture the long-term dependency if two candidates
are far away in the input sequence. After the correlations
among candidates are modeled, we use another attention
mechanism to predict the actual delivery location using the
address features as the context vector.

The overall structure of our proposed model, namely Loc-
Matcher, is shown in Figure 8, which takes location candidate
features (including matching features and profile features) and
address features as inputs in different stages, and generates the
probability distribution among location candidates.

For each location candidate, the time distribution is first fed
into a dense layer with r neurons to generate a dense represen-
tation, which is then concatenated with other profile features
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and matching features to form the location feature input of a
candidate, e.g., l1. Then, it is fed into a dense layer with z
hidden units to generate a high-dimension representation. After
that, the set of representations from all location candidates are
sent into a transformer encoder for the correlation modeling.
The transformer encoder contains N layers, each of which
consists of two sublayers: the first is a multi-head self-attention
mechanism, and the second is a position-wise feed-forward
network. The residual connection is added around each of the
two sub-layers, followed by layer normalization. The output
of the transformer encoder are location embeddings, which
have their inter-relationship modeled. We use {z1, z2, ..., zn}
to denote them, where n is the number of location candidates,
zi ∈ Rz . Next, a similar attention mechanism like [18] is
used to select a delivery location among candidates given
location embeddings. We generate a context vector c ∈ Rm

based on the concatenation of POI category embedding and
the number of deliveries. Given the k-th location embedding,
the matching score sk between the context vector c and the
location embedding zk is calculated as follows:

sk = v⊤tanh(Wzk +Uc+ b) (3)

where v,b ∈ Rp, W ∈ Rp×z , and U ∈ Rp×m are the
parameters to be learned, and p is a hyper-parameter.

Then, sk is normalized over all candidates by the softmax
to generate the probability pk:

pk =
exp(sk)∑n
i=1 exp(si)

(4)

During training, the label is represented using a one-hot
vector (i.e., the index of the actual delivery location among
candidates is marked as 1), and we use the cross-entropy loss
of the label and the predicted probability vector (all predicted
probabilities of different candidates) to optimize the model.
In the inference process, we match the address to the location
candidate with the maximum predicted probability.

TABLE I
STATISTICS OF DATASETS.

Data Description DowBJ SubBJ
# of Delivery Stations 3 8
# of Couriers 82 105
# of Delivery Trips 31,754 26,010
# of GPS Points 33.5M 32.6M
# of Waybills 1.4M 1.0M
# of Addresses (Train&Val) 24,442 & 3,024 16,286 & 2,824
# of Addresses (Evaluation) 5,016 5,145

V. EXPERIMENTS

In this section, we perform extensive experiments to evalu-
ate the proposed method. The effectiveness of DLInfMA is
demonstrated on two real-world datasets and six synthetic
datasets that are derived from the real datasets. Then case
studies are conducted to further show the advantages of
DLInfMA. Finally, the scalability and efficiency of DLInfMA
are discussed.

A. Datasets

We use real-world datasets from JD Logistics for evalua-
tion4. They are collected inside/outside the 3rd Ring of Beijing,
which are named as DowBJ/SubBJ, respectively, and have
different data statistics, e.g., the precision of Geocoding and
the number of historical deliveries per address. Both datasets
cover 20 months (from Jan. 1st, 2018 to Sept. 1st, 2019),
and the average sampling rate of trajectories is 13.5s. We
split datasets into training, evaluation and testing according
to disjoint spatial regions to make sure there is no delivery
location overlaps. The details of each dataset are summarized
in Table I. The ground-truth delivery locations are carefully
labelled by couriers. Since it may not always be the same
as the generated location candidates, for supervised learning
methods that select location from candidates, the positive
labels are obtained using the nearest candidates to the ground-
truth delivery locations. The synthetic datasets (which are
derived from real datasets) will be described when presenting
the experiments on synthetic datasets in Section V-D. We
provide some detailed statistics of the real datasets as follows.
Delivery Location Distribution. Figure 9(a) shows the dis-
tribution of the number of different delivery locations of
addresses in the same building in both datasets. As observed,
the phenomenon that addresses in the same building has
different delivery locations is quite common among different
spatial regions. It shows the diversity of delivery locations,
and the necessity to perform the address-level delivery location
inference. More specifically, more than 22% (14%) buildings
have affiliated addresses with more than one delivery location
in DowBJ (SubBJ), respectively.
Times of Delivery Distribution. Figure 9(b) shows the accu-
mulated distribution of the number of deliveries of an address
in both datasets. It can be observed that SubBJ has slightly

4The dataset in [6] is an annotation-based delivery dataset, which is
inapplicable to our trajectory-based delivery location inference.
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Fig. 9. Dataset Descriptions.

more addresses with fewer deliveries compared to DowBJ,
which indicates customers within the 3rd Ring order more
frequently. Half of addresses have less than 5 deliveries in
DowBJ, while less than 4 in SubBJ. We can also notice that,
in both datasets, there are also addresses associated with many
deliveries due to some active customers.
Stay Point Distribution. Figure 9(c) shows the distribution
of the number of stay points in a trip in both datasets, which
indicates that there could be many location candidates for an
address if the delivery time is recorded with delays. For each
delivery trip, there are more stays in SubBJ than in DowBJ
due to more delivery locations in outer 3rd Ring. The average
number of stay points is 24 in DowBJ and 27 in SubBJ.
Location Candidate Distribution. Figure 9(d) shows the
distribution of the number of location candidates for an address
in both datasets. As observed, the number of candidates for
an address is more than that of stay points in a trip, because
the location candidates are generated based on all trips. The
average number of candidates is 32 in DowBJ and 38 in
SubBJ, which indicates the delivery location inference could
be more difficult in SubBJ given more candidates.

B. Experimental Settings

Baselines. We compare DLInfMA with the following base-
lines:
• Geocoding: This method simply uses the Geocoding result

of the address as the inferred delivery location.
• Annotation [5]: The spatial centroid of the address’s anno-

tated locations is inferred as its delivery location.
• GeoCloud [19]: This is a clustering-based variant of Anno-

tation, which performs DBSCAN over annotated locations
and uses the spatial centroid of the biggest cluster as the
delivery location.

• GeoRank [6]: This method is also based on Annotation.
For each address, all annotated locations are regarded as
delivery location candidates. A pairwise ranking strategy

is employed to train a ranking model with the decision
tree as the base learner. During the inference, the candidate
that wins the most pairwise comparisons is selected as the
delivery location.

• UNet-based [20]: This method infers the delivery locations
based on annotated locations and customers’ locations. We
adapt this method by removing the later one for compar-
ison fairness (since our problem does not take customers’
locations as inputs). It treats the task as an image semantic
segmentation problem. For each address, it first creates an
empty spatial matrix/image centered at the GeoHash grid
with the most number of annotated points. The image size is
9×9, and each pixel denotes a grid with resolution GeoHash
8 (about 32m×19m). The value of each pixel is calculated
based on the annotated locations in the grid. Then, a
semantic segmentation model, i.e., UNet [21], is employed
over the spatial matrix to infer the delivery location.

• MinDist: This method selects the nearest location to the
Geocoded waybill location among location candidates.

• MaxTC: This heuristic method selects the location among
candidates with the maximum TC.

• MaxTC-ILC: This heuristic method is inspired by the well-
known information retrieval algorithm TF-IDF [22], which
selects the location among candidates with the maximum
TC-ILC, defined in Equation (5).

TC-ILCi,j = TCi,j × lg
1

LCi,j
(5)

For baseline methods Annotation, GeoCloud, GeoRank and
UNet-based, the annotated locations could be easily generated
based on the trajectory data (based on the time stamps of
confirmed deliveries).
Variants. We also compare DLInfMA with four types of
variants to show the effectiveness of each component of
DLInfMA:

• DLInfMA-GBDT, DLInfMA-RF, DLInfMA-MLP: These
methods use the same location candidate generation method,
but adopt different classification models (i.e., gradient boost-
ing tree [23], random forest [24], MLP [25]) to classify
with extracted features whether a location candidate is the
delivery location of the address. During the inference, we
choose for each address the location candidate of the highest
probability.

• DLInfMA-RkDT, DLInfMA-RkNet: These methods lever-
age the pairwise ranking strategy, but adopt different base
learners (namely decision tree and RankNet [26]) to infer
the delivery location, while others remain the same as
DLInfMA.

• DLInfMA-PN: This method replaces the transformer in
LocMatcher with an LSTM as [18] did.

• DLInfMA-Grid: This method is similar to DLInfMA, except
that location candidates are generated by the grid merg-
ing [12].

Evaluation Metrics. We use three metrics, i.e., MAE, P95
and βδ , to evaluate the performance of the methods considered:



• MAE: it is used to characterize the average inference error
over all evaluation samples.

• P95: it is the 0.95 percentile error adopted from [6], which
cares more about the performance of bad cases, since in
some application scenarios, e.g., parcel assignment, the
occasional large inference errors can cause huge business
loss.

• βδ: it is the percentage of evaluation samples with error less
than a given distance threshold δ. As mentioned in [20], the
delivery business would not be impacted much if the error
is bounded by a small threshold.

Formally, MAE and βδ are defined as follows:

MAE =

∑|A|
j=0 dist(l̂

j
d, l

j
d)

|A|
(6)

βδ =

∑|A|
j=0 1(dist(l̂

j
d, l

j
d) < δ)

|A|
× 100% (7)

where ljd and l̂jd is the ground-truth and inferred delivery
location of the address addrj , respectively, dist(·, ·) is the
geospatial distance between two given locations, and δ is a
given distance threshold.

In following experiments, the unit of MAE and P95 is in
meters, and δ is set to 50m by following [20].
Training Details & Hyperparameters. In candidate pool
construction, the distance threshold D is set to 40m. We
use the grid search to find the best hyperparameters for each
method. In LocMatcher, POI category is embedded to R3, r is
3, z is 8 and p is 32, the transformer encoder contains 3 layers,
each of which contains 2 heads and 32 neurons in the dense
sublayer, and the dropout is set to 0.1. We use Adam [27]
with β1 = 0.9 and β2 = 0.999 to perform training with a
learning rate 1e-4 and batch size 16. We also reduce by half
the learning rate every 5 epochs. The training is stopped once
the validation loss no longer decreases. In GeoCloud, we set
the minimum number of points to 1 to make sure we can also
perform the clustering even if an address has been delivered
only for a few times. In GeoRank and DLInfMA-RkDT, there
are 1024 leaf nodes at maximum. For all classification based
methods, the class weight is set to 8:2 due to imbalanced
labels. In DLInfMA-GBDT, the number of boosting stages
is 150. In DLInfMA-RF, the maximum depth is 10, and the
number of trees is 400. In DLInfMA-MLP and DLInfMA-
RkNet, features are fed into 1 hidden layer with 16 neurons.
In DLInfMA-PN, the LSTM has 32 neurons. In DLInfMA-
Grid, the grid size is D/3, so that the maximum size of a
location is bounded in D ×D, which is similar to ours.
Implementations. Our algorithms are implemented in Python
with PyTorch and Scikit-Learn. Experiments are conducted on
a docker with 16 Cores@2.2GHz, 64GB memory and Red Hat
Linux in the internal environment of JD for privacy protection.

C. Effectiveness Evaluation on Real-world Datasets

Overall Evaluation. We report the overall performance of
DLInfMA on two datasets compared with baselines in Table II.
We have following observations:

TABLE II
OVERALL EFFECTIVENESS EVALUATION.

Methods DowBJ SubBJ
MAE P95 β50 MAE P95 β50

Annotation 160.7 533.8 32.5 251.9 910.4 32.6
MaxTC 179.9 960.6 50.9 295.1 1377.9 39.4
Geocoding 146.4 476.9 55.7 156.0 477.4 46.7
MinDist 73.4 225.0 59.0 115.3 381.5 51.8
GeoCloud 88.4 254.8 60.0 136.6 449.4 56.4
MaxTC-ILC 64.2 268.5 68.7 118.9 379.5 52.3
GeoRank 46.5 149.2 78.7 90.9 335.6 70.8
UNet-based 107.3 1018.9 80.8 332.9 2045.1 65.0
DLInfMA-RkDT 37.0 149.0 80.0 67.1 278.6 70.3
DLInfMA-Grid 34.3 145.9 80.9 66.0 288.8 69.1
DLInfMA-MLP 36.2 154.8 81.5 63.3 286.9 71.8
DLInfMA-GBDT 34.7 136.5 82.1 59.9 272.6 73.6
DLInfMA-RF 34.3 137.4 82.1 57.0 268.9 73.9
DLInfMA-RkNet 34.4 140.3 82.5 58.8 265.1 74.3
DLInfMA-PN 33.7 126.9 83.9 53.4 243.5 76.9
DLInfMA-nTC 61.3 183.6 64.1 110.6 397.9 55.6
DLInfMA-nD 55.3 257.2 72.9 68.7 280.0 69.8
DLInfMA-nLC 35.6 143.4 81.3 49.8 238.9 78.1
DLInfMA-nP 34.8 146.9 82.6 64.0 289.6 72.0
DLInfMA-LCaddr 34.0 134.1 82.8 50.1 238.0 77.6
DLInfMA-nA 33.2 136.3 83.2 53.3 248.1 75.8
DLInfMA (Ours) 31.3 123.7 84.1 48.2 231.0 77.8

• Annotation and MaxTC are the worst. For Annotation, its
performance highly depends on the annotation behavior of
couriers, which is not always good among all couriers.
MaxTC does not perform well in these datasets either,
which indicates it is insufficient to only consider TC, since
there are common locations that a courier would pass by
frequently in many trips.

• The third worst is Geocoding, which is used as the delivery
location in practice by default. Its large errors call for a
better method to infer delivery locations.

• MinDist is better than Geocoding, indicating that though we
cannot treat the Geocoded location as the delivery location,
the actual delivery location is usually not that far from it.

• GeoCloud and MaxTC-ILC show competitive results. Geo-
Cloud can be regarded as an unsupervised variant of An-
notation, which considers the mis-annotation cases, and
leverages a clustering technique to filter out mis-annotated
locations. As for MaxTC-ILC, though only one feature
inverse LC is added, it significantly outperforms MaxTC,
which shows its ability to penalize those location candidates
passed by many trips.

• GeoRank and UNet-based, the supervised variants of An-
notation, are the best baselines on β50. They show the
necessity to use a supervised learning model to infer the
delivery locations. However, all annotation-based methods
only consider the annotated locations for the delivery lo-
cation inference, while rich information from trajectories,
e.g., the locations visited before the delivery confirmation
and trip related features, is dismissed.

• Though UNet-based has a relatively good performance on
β50, its MAE and P95 are not ideal. We think the reason is
two-fold: 1) It needs to locate a center GeoHash grid based
on annotated locations to create the spatial density matrix. If



the annotated locations are rather noisy, the actual delivery
location might be out of the spatial density matrix (i.e., the
model has no chance to make a correct prediction); 2) It uses
the spatial center of the predicted GeoHash grid to represent
the inferred delivery location, which might not be accurate
enough.

• Our method DLInfMA consistently outperforms baselines
over three metrics. Its MAE and P95 are much better than
baselines, which shows its average error is the lowest and
it is able to correctly infer delivery locations for more
addresses. Its β50 is 84.1% on DowBJ and 77.8% on
SubBJ, which outperforms the best baselines by 4% and
10%, respectively. The results of two datasets are slightly
different, which is due to the different Geocoding precision
and distributions of the number of deliveries per address in
the two datasets.

Ablation Studies. Among the variants, classification-based
and pairwise ranking-based methods are worse, because they
fail to consider all candidates jointly. As expected, DLInfMA-
RkNet is generally better than classification-based methods,
since it models the pairwise relationship. Interestingly, we
found DLInfMA-RkDT is worse than classification-based
methods. We guess the reason is that the simple decision tree
model can not handle some sparse input in our features, e.g.,
the time distribution, while the neural network based method
shows a better performance. DLInfMA-PN is worse than
DLInfMA due to the long-term dependency issues. We find
that the locations generated by the DLInfMA-Grid are many
more than ours, because there might be two locations that
are very close at the grid boundary, which may degrade the
performance of the location inference.
Importance of Features. The importance of features is also
shown in Table II. DLInfMA-nTC, DLInfMA-nD, DLInfMA-
nP, DLInfMA-nLC, and DLInfMA-nA are DLInfMA with
the features of the trip coverage, the distance, the location
profile, the location commonality, and the address dropped.
Note that DLInfMA-nA is achieved by removing term Uc
in Equation (3). It shows that both TC and distance are
very important: when they are removed, the performance is
significantly degraded. The LC, location profile and address
also help as the results of DLInfMA-nLC , DLInfMA-nP and
DLInfMA-nA show. DLInfMA-LCaddr replaces the building-
based LC with the address-based one. It is less effective than
DLInfMA, which is in line with our expectations, because
when inferring the delivery location for an address, DLInfMA-
LCaddr would mistakenly penalize locations frequently visited
when delivering for other addresses of the same building.
Clustering Distance Selection. For candidate pool construc-
tion, we vary the clustering distance D from 20m to 60m to
select the one with the best performance. The MAEs of both
datasets with different D are reported in Figure 10(a). Though
with the increase of D, the number of location candidates for
each address to choose from would decrease, we find MAE
first decreases and then increases. The reason is that, when
D is smaller, it is more difficult to select the actual delivery
location among massive candidates; when D is larger, the
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Fig. 10. Distance Selection and Different # of Deliveries.

precision of location candidates is degraded, which increases
MAE. Therefore, we set D = 40m at the turning point.
Different Number of Deliveries. We divide addresses into
three equal-frequency groups based on the number of deliver-
ies that involve the address, and report MAE of DLInfMA
as well as those of the four representative baselines, i.e.,
GeoCloud, MaxTC-ILC, GeoRank, UNet-based on DowBJ
in Figure 10(b). When the number of deliveries increases,
GeoCloud, UNet-based and MaxTC-ILC become better. Given
more delivery records, GeoCloud can better identify mis-
annotated locations, and UNet-based as well as MaxTC-ILC
can better select locations with more distinguishable features.
The performance of GeoRank and DLInfMA for addresses
with few deliveries is not severely degraded. This is because
the distance also matters, yet it is not considered by the other
three baselines. MAE of GeoRank first decreases, then slightly
increases. The reason might be lacking features whose contri-
bution to the delivery location inference is highly related to
the number of deliveries. MAE of DLInfMA slightly decreases
with the number of deliveries, and consistently outperforms
baselines. LocMatcher in DLInfMA uses the address feature
as a context vector to calculate the attention weights of
different location embeddings, which semantically decides the
importance of different features.

D. Effectiveness Evaluation on Synthetic Datasets

In order to show the robustness of DLInfMA against couri-
ers’ behaviors of confirmation with delays, we further perform
evaluation on synthetic datasets by injecting delays of different
extents to DowBJ and SubBJ. We first introduce how we inject
the delays to existing datasets and then report the results.
Synthetic Dataset Generation. We observed from the data
that the phenomena of confirmation with delays are usually
caused by couriers’ batch confirmation operations. That is,
after a batch of parcels are delivered, which could be at differ-
ent delivery locations, the courier performs the confirmation
for them all at once for confirmation convenience. And we
found such operations are usually conducted when couriers
are staying at some locations.

Inspired by this, we devise the following method to inject
different extents of delays to waybills: (1) Based on the
ground-truth delivery location, we first find the actual delivery
time of each waybill based on its nearby stay points. (2) Then,
for each delivery trip, we sequentially divide stay points in the
trip into several equal-sized groups. In each group, the time of



TABLE III
DIFFERENT PROBABILITIES OF CONFIRMATION WITH DELAYS.

Methods
Different Probabilities of Delays on DowBJ Different Probabilities of Delays on SubBJ

0.2 0.6 1.0 0.2 0.6 1.0
MAE P95 β50 MAE P95 β50 MAE P95 β50 MAE P95 β50 MAE P95 β50 MAE P95 β50

Annotation 114.2 431.3 44.5 285.2 742.5 11.7 454.2 1050.9 2.2 175.3 693.0 45.3 454.3 1448.8 12.6 742.1 2269.5 2.1
MaxTC 172.3 913.8 51.1 188.4 1028.6 48.9 210.6 1065.6 44.1 291.7 1311.0 39.4 306.0 1492.6 38.0 337.9 1883.5 33.2
Geocoding 146.4 476.9 55.7 146.4 476.9 55.7 146.4 476.9 55.7 156.0 477.4 46.7 156.0 477.4 46.7 156.0 477.4 46.7
MinDist 72.2 215.6 59.8 75.6 229.8 56.8 77.6 236.3 55.1 114.3 381.5 52.3 119.0 408.3 50.1 121.9 424.9 48.6
GeoCloud 62.1 171.6 69.2 198.6 1005.0 30.2 417.4 1311.3 6.7 85.5 233.8 68.6 373.0 2126.6 28.2 800.7 2844.7 4.1
MaxTC-ILC 63.4 268.7 69.7 67.2 268.6 65.6 74.2 274.3 59.5 116.9 371.9 53.0 126.8 424.6 49.2 149.1 493.5 39.0
GeoRank 43.1 128.8 80.8 85.8 307.1 67.0 193.9 955.1 28.7 65.2 229.6 74.3 180.4 644.6 53.7 436.6 2541.3 12.9
UNet-based 50.6 180.6 83.7 350.0 1382.7 57.5 812.0 1621.6 3.4 89.4 327.1 72.7 543.0 2103.9 47.3 1089.5 2863.4 3.8
DLInfMA 31.0 125.5 84.6 34.2 127.7 81.0 40.2 140.1 74.6 45.3 225.1 79.1 56.1 238.0 72.9 75.1 280.7 61.2
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the last stay point serves as a time to do the batch confirmation.
Each waybill that is actually delivered before that time and
after the previous batch confirmation time has a probability
pd to be deliberately delayed, i.e., setting its delivery time to
that batch confirmation time. In this way, the delivery times
would usually involve some delays. For example, as shown
in Figure 11, the delivery trip contains 6 stay points, and we
assume waybills are confirmed with 2 batches. Then the times
of sp3 and sp6 are treated as the time to perform the batch
confirmation. The delivery time of waybills delivered at sp1
and sp2 are delayed to the time of sp3 with probability pd.
The delivery time of waybills delivered in sp4 and sp5 are
delayed to the time of sp6 in the same way.

Based on the data analysis of the real-world datasets,
couriers usually has 2 times to perform the batch confirmation,
and pd is around 0.3. Therefore, we keep the same number
of batch confirmation times, and vary pd in {0.2, 0.6, 1.0} to
evaluate the proposed method under different circumstances
(i.e., datasets involve slight, moderate, or significant delays).
Results. As shown in Table III, all methods except Geocoding
became worse with the increase of pd, since its performance
is purely based on the address input. Four annotation-based
baselines (Annotation, GeoCloud, GeoRank and UNet-based)
have a better performance when pd is small, which shows
the advantages of using the delivery data to infer the delivery
locations. However, with the increase of pd, the performances
of annotation-based methods degrade significantly, which are
even worse than Geocoding ultimately. It shows those methods
only work when delay confirmations seldom occur. Otherwise,
the annotated locations can be arbitrarily far away from the

actual delivery locations and the probability that the delivery
location is covered by the annotated locations would become
lower. MinDist, MaxTC and MaxTC-ILC are less sensitive to
the decrease of dp, which shows that the features we employ
are less affected by the delayed confirmations. DLInfMA
consistently outperforms all baselines under different delay
probabilities over three metrics on two datasets, which shows
its robustness against the couriers’ annotation behaviors.

E. Case Studies

We now give three case studies to further demonstrate the
effectiveness of DLInfMA and illustrate why Geocoding is not
sufficient for the delivery location inference in detail.

Firstly, Geocoding suffers from issues of similar location
names and unclear address input, which make it parse the
address to a wrong location. Figure 12(a) shows a case that the
actual delivery location of the address is 258m away from the
Geocoded result. It parsed the address to a nearby residential
area (from “San Yi Li” to “San Yi Xi Li”). Those two names
are quite similar, which make the Geocoding system confused.
Since the building number of the address also appears in “San
Yi Xi Li”, it returns the location comfortably, which causes
a huge error. On the contrary, DLInfMA does not explicitly
use the plaintext address to make the prediction. Though it
considers the distance to the Geocoded location, it also takes
trip coverage, location commonalities and many other features
derived from trajectories, and makes decisions wisely.

Secondly, if the underlying POI database (which is manually
collected) of Geocoding is not fine-grained enough, Geocoding
is only able to produce one location for multiple addresses
in an area. Figure 12(b) shows three addresses in different
buildings whose Geocoded locations are the same one and fall
at the center of the residential area. It is not close to any of
the actual delivery locations. On the contrary, DLInfMA infers
the delivery location based on candidates, which are generated
based on couriers’ stay points. Therefore, the potential loca-
tions we can use are much more fine-grained.

Thirdly, Geocoding is not able to capture diverse customer
preferences of receiving parcels, which is not uncommon as
we have already illustrated in Figure 9(a). We show two
addresses, which share the same building in Figure 12(c). As
expected, they have the same Geocoded location. However,
they have different delivery locations: l1 and l2, which are
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110m away. l1 is closer to the Geocoded location and within
a real estate. However, l2 is a bit far away and outside the
real estate. We physically visited l2 and found a convenience
store there. Furthermore, we knew from the store staff that,
for customers living nearby, it provides a service of receiving
parcels charging only 1RMB. This case shows the address-
based delivery location inference is able to give preference-
aware inference results.

F. Scalability Evaluation

In this subsection, we report the efficiency results of
DLInfMA. The time consumption of using DLInfMA to infer
the delivery location mainly contains following four parts:
(1) Stay Point Extraction. This step is implemented with
trajectory-level parallelization. In this step, given the trajectory
data with 66.1M points, it takes 7min.
(2) Candidate Pool Construction. In this step, the location
candidates are generated in a bi-weekly manner and for each
station and each time period in parallel. Then a station-
level parallel processing is used to merge location candidates
generated in the past. For the data of 11 stations over 20
months, it takes 1min in total.
(3) Model Training. We also report the training time
of DLInfMA and two supervised baselines, i.e., GeoRank
and UNet-based on DowBJ. GeoRank takes 0.2 minutes to
complete the training, which is the fastest given the simpler
model and less location candidate pairs derived from annotated
locations. Both UNet-based and DLInfMA are trained in the
mini-batch fashion, which requires a longer time. As for
UNet-based, it takes 27.0 minutes, since each sample has
9×9 candidates, and UNet needs to calculate feature maps
at different resolutions, which is more complex than others.
DLInfMA takes 13.6 minutes until it converges. DLInfMA
is faster than UNet-based, because the computation time of
DLInfMA is dynamic for each address, which is related to
number of candidates of each sample, while it is fixed for
UNet-based.
(4) Inference. The inference time of DLInfMA as well as
baselines is shown in Figure 13, which grows linearly with
the increase of the # of addresses. The heuristics-based algo-
rithms are the most efficient. GeoRank is slightly slower than
GeoCloud, since it needs to perform quadratic comparisons
among annotated locations. DLInfMA is also faster than UNet-
based during the inference. As we explained previously, its
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time complexity is related to the number of location candidates
for an address. In our datasets, for 95% addresses, it is less
than 78. However, UNet-based always needs to score 9×9
locations for each sample. DLInfMA can infer 1,000 addresses
per second, which is practical for real world usage because the
inference is usually performed offline, and the inference result
is served as a basic geospatial data source.

VI. DEPLOYMENT AND APPLICATIONS

A delivery location inference system based on DLInfMA is
deployed and used internally in JD Logistics.

A. Deployment

The system is shown in Figure 14. Given the low update
frequency of delivery location, the system does not require
the real-time inference. Instead, we design a delivery lo-
cation query API based on inferred results, which is able
to answer online requests by downstream applications. To
obtain the inferred results, we pre-process and store the raw
couriers’ trajectories and waybills in our self-developed spatio-
temporal distributed platform, JD Urban Spatio-Temporal Data
Engine (JUST) [28] for large-scale processing and querying.
DLInfMA retrieves the pre-processed data from JUST, and
performs the delivery location inference. Results are stored to
a key-value database storing the mapping from each address
to its inferred delivery location. In order to make the delivery
knowledge more general (e.g., it can handle real-time cases,
where the addresses might have never appeared in history), we
also obtain the mostly used delivery location for each building
based on addresses affiliated to it. For the online delivery
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location query, we first search for the results in address-based
database. If it fails, we search in the building-based one. If
it fails again, we directly return its Geocoded location. The
inference results are periodically updated since the inference
would be more accurate with more historical deliveries.

Based on the system, we present following two applications:

B. Application 1: Route Planning

The route planning is a useful function for new couri-
ers. Previously, routes are planned using TSP [1] based on
Geocoded locations, which are unsatisfactory given the inac-
curate Geocoded locations. Based on DLInfMA, the inferred
delivery locations are employed, and an interface of this
process is shown in Figure 15(a).

C. Application 2: Customer Availability Inference

Knowing the availability of customers not only promotes the
delivery success rate, but also improves customer experience.
Based on historical deliveries, we can model the delivery
feasibility of an address considering time of the day, day of
the week and meteorology. However, the availability labels
are obtained based on the delivery time recorded manually
previously, which might be delayed. After finding delivery
locations, we can find the actual delivery time using the
stay points nearby the actual delivery location. Figure 15(b)
shows the time windows of addresses where the availability
probabilities are above a threshold.

VII. RELATED WORK

Volunteered Geographic Information. Volunteered geo-
graphic information (VGI) [29] is the alternative geospatial
data source provided by volunteers. Apart from traditional
VGI platforms (e.g., OpenStreetMap), there are also some
indirect ways contributing to VGI. A typical way is the
spatial footprint [30] generated by people on social media
platforms. It can be used to investigate the boundaries of
vague place concepts [31], and enrich gazetteers with new
place entries [32]. Recently, the annotated locations in the
logistics also attracts the attention to contribute VGI [5], [6],
[19], [33], such as finding regions of interest (ROIs) [33], im-
proving Geocoding [19], correcting wrong locations claimed
by merchants [34] and inferring the delivery locations [5], [6],
[20]. [5] treats the spatial centroid of annotated locations
sharing the same address as its delivery location. [6] treats
all annotated locations sharing the same address as candidates,

and introduces a pairwise ranking model to select the delivery
location. Such annotation data used by existing works only
contains one annotated location for each parcel’s delivery. As
explained in Section I, these methods would fail in cases of
mis-annotations. A recent work [20] tries to mitigate the issue
by incorporating customers’ location data, but they introduce
additional data source from customer-side locations, which
may not always be available. Different from them, we leverage
couriers’ trajectories, which contain richer information than
annotated locations and are totally generated from couriers’
daily operations, to infer the actual delivery locations.
Trajectory Data Mining. Trajectory data mining [8] aims to
discover various knowledge from massive trajectory data: map
enhancement [35], [36], interesting place discovery [9], [11],
[12], [37], billboard selection [38], risky zone detection [39],
crow flow inference [40], etc. In this work, we discover deliv-
ery locations for each address based on couriers’ trajectories,
even the delivery time is recorded with significant delays.
Location Selection. Our work is essentially to select a location
from multiple candidates given a specific address. The location
selection task is usually formulated as a ranking problem [14],
[15], [41]. Zhang et al. [41] find a location with the highest
geo-tf-idf score among candidates, which characterizes the
relevance of tags at the location and the geographical region.
Other methods attempt to learn the ranking function, which
can fuse various factors for selecting commercial sites [14],
[15]. Different from these studies, we use an attention-based
model LocMatcher to compute scores of location candidates
jointly and make the selection.

VIII. CONCLUSION

In this paper, we propose DLInfMA, a method to discover
delivery locations based on couriers’ trajectories, which con-
siders that couriers may record delivery time with delays.
DLInfMA first discovers location candidates by clustering stay
points in trajectories, and then infers the delivery location of
an address as the location candidate selected by an attention-
based model, LocMatcher. DLInfMA outperforms baselines
in all metrics. Even for the most competitive metric (accuracy
within 50m), it outperforms the best baselines by 4%-10%. It
is able to infer 1K addresses/s. Finally, a deployed system
based on it as well as two applications are introduced. The
deployment shows DLInfMA can facilitate many downstream
tasks.
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