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Abstract—Similarity search has recently become an integral
part of many trajectory data analysis tasks. As the number of
trajectories increases, we must find similar trajectories among
massive trajectories, necessitating a scalable and efficient frame-
work. Typically, massive trajectory data can be managed by
key-value data stores. However, existing works with key-value
data stores use a coarse representation to store trajectory data.
Besides, they do not provide efficient query processing to search
similar trajectories. Thus, this paper proposes TraSS, an efficient
framework for trajectory similarity search in key-value data
stores. We propose a novel spatial index, XZ*, which utilizes
fine-grained index spaces with irregular shapes and sizes to
represent trajectories elaborately. Further, we devise a bijective
function from the index spaces of XZ* to continuous integers,
which is simple but effective for query processing. To improve
the efficiency of similarity search, we employ two steps to prune
dissimilar trajectories: (1) global pruning. It leverages the XZ*
index to prune index spaces with no trajectories similar to the
query trajectory. Our global pruning can only pick out index
spaces with similar sizes and shapes to the query trajectory.
Compared to the state-of-the-art index, our global pruning
reduces I/O overhead up to 66.4% during query processing; (2)
local filtering. It filters dissimilar trajectories in a way with low
complexity. We use a few representative features extracted from
a trajectory by the Douglas-Peucker algorithm to accelerate the
local filtering. We implement an open-source toolkit (TraSS) on
a popular key-value data store. Extensive experiments show that
TraSS outperforms state-of-the-art solutions.

Index Terms—similarity search, trajectory data management,
key-value database, trajectory index

I. INTRODUCTION

In modern times, Internet of Things technology enables
us to easily capture trajectories of moving objects. As a
result, a large number of trajectories have been collected. For
example, there are more than 1TB trajectory logs generated
by over 60,000 couriers of JingDong each day [1]. T-Drive
[2] contains 790 million trajectories collected in Beijing over
only three months. Such massive trajectory data calls for
efficient and scalable data management. There are many query
operations for trajectory data management, e.g., the spatial
range query finds trajectories passing a given spatial range, and
the similarity query searches all trajectories that are similar to
a given trajectory. Among these queries, trajectory similarity
search is a vital and fundamental operation. For example, to
find the close contacts of a patient with an infectious disease,
we would look for trajectories that are similar to the patient’s
trajectory [3]. Trajectory similarity search is also conducive to
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carpooling trajectory clustering. Key-value data stores such as
HBase [4] are widely used in big data management because
they achieve fast write/read throughput and fast lookup on the
row key. There are some works [5]–[10] utilize key-value data
stores for big trajectory data management. However, they do
not provide trajectory similarity search efficiently because (1)
they store trajectory with a coarse representation, and (2) they
lack efficient query processing to search similar trajectories.

Representation. A trajectory is composed of multi-
dimensional points, but key-value data stores store objects
using one-dimensional key-value pairs. Thus, we must allocate
an appropriate key to a trajectory. Existing works use spatial
indexes, such as R-trees [11]–[16] and XZ-Ordering [17], to
represent trajectories in key-value data stores. They distribute
massive trajectories into many index spaces. Each index space
has a spatial boundary and is equipped with a unique value.
Thus, we can use that unique value as a part of the key to store
and query data. Dynamic indexes such as the R-tree and its
variants are inevitable to adjust index structures when inserting
much data [18]. Thus, existing works [19], [20] that use
dynamic indexes suffer from maintainability and scalability
problems in big trajectory data management. Demonstrated by
[8], [9], [21], [22], XZ-Ordering is a better choice to represent
trajectories in key-value data stores. It can be regarded as an
extension of a quad-tree by doubling the width and height of
each sub-space, as indicated by the arrows in Figure 1(a)(b).
XZ-Ordering utilizes the smallest index space to represent
a trajectory’s MBR (minimum bounding box). As shown in
Figure 1(b), T1 is represented by a bigger index space (‘00’),
whereas T3 is denoted by a smaller index space (‘303’).
However, the points of a trajectory may only appear in a
small portion of the index space, e.g., T1 occupies less than
half of its index space (“00”). As a result, the index space of
XZ-Ordering is still too coarse for a trajectory. Thus, when
querying, it is laborious to filter out dissimilar trajectories by
pruning index spaces of XZ-Ordering only.

Query processing. Calculating the similarity of two tra-
jectories is time-consuming, as similarity measures tend to
be rather complex. Therefore, it is essential to prune as
many dissimilar trajectories as possible in advance to avoid
incurring unnecessary I/O overhead and calculation during
query processing. The process of scanning all trajectories
in the regions and calculating their similarities to a query
trajectory is time-consuming and irrational. Thus, two steps
are frequently adopted to improve query efficiency: (1) global
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Fig. 1. Representation of Trajectories.

pruning avoids visiting irrelevant storage regions. Two similar
trajectories are likely to be spatially close to each other. Thus,
index spaces that are spatially far from the query trajectory
can be pruned. Typically, the index space of most existing
spatial indexes is a rectangle encompassing the MBRs of
trajectories. Many existing works [8], [10], [21] do not prune
index spaces that intersect the MBR of a query trajectory,
resulting in a large number of false hits that cause unnecessary
I/O overhead. As shown in Figure 1(b), T1, T2 and T3 are
false hits because they are far away from Q; (2) local filtering
rapidly removes dissimilar trajectories in each data region in a
low-complexity way. Existing works [8], [9], [19], [20] use the
MBR or pivot points (e.g., start and end points) of a trajectory
to filter dissimilar trajectories. However, these features cannot
meticulously represent the spatial shape of a trajectory.

Our Solution. To address the shortcomings above, we pro-
pose TraSS, an efficient framework for Trajectory Similarity
Search on key-value data stores. (Representation). We pro-
pose the XZ* index to represent as many similar trajectories as
possible within the same index space. Specifically, it divides
each enlarged element of XZ-Ordering into four equal sub-
quads and uses the combinations of sub-quads as index spaces.
A larger index space is used to cover bigger trajectories, while
a smaller index space is used to cover smaller trajectories.
Additionally, trajectories of similar size can be differentiated
by their spatial shapes. As illustrated in Figure 1(c), we divide
an enlarged element (“00”) of XZ-Ordering into four equal
parts a, b, c, d, and then use the combinations of them
represent trajectories with different shapes, e.g., (00, 2) and
(00, 7) represents T1 and T2, respectively. Additionally, we
devise a bijective function that converts the index spaces to
continuous integer values, instead of maintaining an index
structure in memory. It consumes less storage overhead than
string encoding and improves maintainability and scalability.
(Query processing). (Global pruning). Because our index
can precisely describe the size and shape of a trajectory, we
would only visit a few index spaces similar to a query trajec-
tory Q, avoiding visiting trajectories covered by index spaces
that are dissimilar to Q. Intuitively, index spaces that are too
large or too small than Q, and index spaces with similar sizes
to Q but are far from Q can be directly pruned. As illustrated
in Figure 1(c), part-a of ‘00’ is far away from Q, so that index
spaces combined by part-a can be pruned. Additionally, in
Figure 1(c), q1 of Q is far away from the index space of (303,
6), implying that Q is dissimilar to the trajectories covered by
(303, 6). In theory, compared with a state-of-the-art solution,
we can reduce I/O overhead by up to 83.6% (cf. Section IV-B).
As illustrated in Figure 1(c), only the index space of (03, 7) can
cover the trajectories that are similar to Q. (Local filtering).

We extract representative points from a trajectory using the DP
(Douglas-Peucker) algorithm [23], which leverages very few
points to approximate the spatial shape of a trajectory. Besides,
we use bounding boxes to represent points between any two
continuous representative points. We can quickly filter out
dissimilar trajectories because the numbers of representative
points and bounding boxes are much smaller than points in a
trajectory. As shown in Figure 1(d), we use four points and
three bounding boxes to represent a 200-point trajectory T4,
p150 is the third representative point of T4 and is far away
from Q, so we can quickly eliminate T4. Finally, only a few
trajectories must calculate the inevitable and time-consuming
similarity after global pruning and local filtering. To sum up,
the contributions of this paper are three-fold:
• We propose a novel spatial index, XZ*. It represents a trajec-

tory using a fine-grained index space with different sizes and
irregular shapes. Theoretically, it can reduce I/O overhead up
to 83.6% compared to XZ-Ordering. We propose a bijective
function from index spaces of XZ* to continuous integer
values, which retains the spatial characteristics of XZ*
and improves the maintainability and scalability, reducing
storage overhead on row keys by up to 32% compared to
string encoding.

• We devise two efficient query processing algorithms to
execute similarity searches based on a given threshold and
top-k similarity search. Our global pruning strategy carefully
generates range scans of index spaces instead of scanning
all index spaces intersecting with a query trajectory. Exper-
imentally, it reduces I/O overhead up to 66.4% compared
to XZ-Ordering. The local filtering uses the DP features
to minimize the overhead associated with calculating the
similarity of two trajectories.

• We conduct extensive experiments on two real and five
synthetic datasets. Additionally, we create an open-source
toolkit called TraSS [24] by integrating our framework into
HBase, which outperforms other solutions.
The rest of the paper is organized as follows. Section II

formalizes the problem of trajectory similarity search. Sec-
tion III gives the overview of our framework. Section IV
introduces the representation of a trajectory, including the
design of the index structure and encoding. Section V shows
pruning strategies for query processing. Section VI evaluates
the performance of our framework. Section VIII discusses the
related works. Section IX is the conclusion.

II. PRELIMINARY

A. Definitions
Definition 1. (Trajectory). A trajectory T is a collection of
multidimensional points, defined as T = (t1, ..., tn).

For simplicity, we represent each point as a 2-dimensional
tuple, e.g., ti = (latitude, longitude). It can be easily
extended to support multidimensional data. We use T and
Ti to represent a trajectory or a trajetory with ID i, respec-
tively. T = {T1, ..., Tk} denotes a set of trajectories. T j

denotes the prefix of T up to the j-th point. For example,
if T = (t1, ..., t10), then T 3 = (t1, t2, t3).
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Similarity Distance. There exist a variety of trajectory sim-
ilarity measures. Instead of designing a new similarity mea-
sure, we adopt classic measures [25] in our framework, e.g.,
Discrete Fréchet distance, Hausdorff distance, and DTW. In
this paper, we use Discrete Fréchet distance as the default
similarity measure. Other similarity measures are discussed
in Section VII. Given two trajectories Q = (q1, ..., qn) and
T = (t1, ..., tm), the definition of Discrete Fréchet distance is
as follows:

Definition 2. (Discrete Fréchet).

DF (Qn, Tm) =



m
max
k=1

d(q1, tk) if n = 1
n

max
k=1

d(qk, t1) if m = 1

max{d(qn, tm),min{DF (Q
n−1, Tm),

DF (Q
n, Tm−1), DF (Q

n−1, Tm−1)}}

,

where Q = Qn = (q1, ..., qn), T = Tm = (t1, ..., tm), and
d(p1, p2) is the Euclidean distance of two points.

B. Problem Formulation

We use f(Q,T ) to represent the similarity distance of two
trajectories Q and T , where f(Q,T ) can be Fréchet (default
measure), Hausdorff, or DTW. In this paper, we aim to solve
two types of the trajectory similarity search problem.

Definition 3. (Threshold Similarity Search). Given a query
trajectory Q and a threshold ε, the threshold similarity search
finds trajectories T , such that ∀ T ∈ T , we have f(Q,T ) ≤ ε.

Definition 4. (Top-k Similarity Search). Given a query tra-
jectory Q and an integer number k, the top-k trajectory
similarity search finds k trajectories T , such that |T | = k,
for ∀ Ti ∈ T and ∀ Tj /∈ T , we have f(Q,Ti) < f(Q,Tj).

III. OVERVIEW

Figure 2 gives an overview of our framework. Its core
operations are representation and query processing.

Representation. We propose the XZ* index that provides
an index space with an irregular shape to represent a trajectory
(cf. Section IV-B). Then, we number each index space with
a unique integer for conveniently storing and querying tra-
jectories (cf. Sections IV-C and IV-E). Besides, we calculate
the representative features of a trajectory for accelerating the
query processing (cf. Section IV-D). As shown in Figure 2
(Representation), trajectories T1 and T2 are indexed by suitable

index spaces, equipped with DP-features, and then encoded
with elaborate codes (1110 and 1011, respectively) for storing.

Query Processing. We provide efficient query processing
to find similar trajectories from the database. As shown
in Figure 2 (Query Processing), given a query trajectory Q,
we first use the global pruning to filter out index spaces that
are impossible to contain trajectories similar to the query
trajectory (cf. Section V-C). Then, we eliminate trajectories
that would not be the final answers in the remaining index
spaces through the local filtering (cf. Section V-D) on each
data region. Section V-E gives the detailed steps.

IV. REPRESENTATION

This section explores how to represent a trajectory in a
key-value data store. We first introduce the main idea of
designing our spatial index for key-value data stores in Section
IV-A. Based on the main idea, XZ* index is proposed, which
includes two main operations, namely Indexing (Section IV-B)
and Encoding (Section IV-C). Then, we extract representative
features to approximately represent a trajectory (Section IV-D).
Finally, Section IV-E introduces how to store trajectories.

A. Main Idea of XZ* Index

A trajectory is a sequence of multidimensional points, while
key-value data stores use one-dimensional key-value pairs
to store data. To use a one-dimensional key to represent a
trajectory, we should divide the space into multiple partitions
and design an elaborate encoding for the spatial partitions.
Therefore, we propose XZ* index.

Index structure of XZ* index. The existing spatial index
represents a trajectory using the grid cell that covers the MBR
of the trajectory. Because MBR is a coarse description of
trajectory shape, and the grid cell is also an inaccurate rep-
resentation of the MBR, trajectories with significant different
shapes would be indexed by the same grid cell, which is not
conducive to the efficiency of pruning. To this end, we provide
a fine-grained index space, which uses an irregular index space
to represent the shape of a trajectory meticulously.

Encoding of XZ* index. After using suitable index spaces
to represent trajectories, key-value data stores need one-
dimensional row keys to store and query them. Thus, we devise
a bijective function to map index spaces to integers, which
allocates a unique index value to an index space of the XZ*.

B. Indexing

We propose a fine-grained static index, namely XZ*, which
can represent the shape of a trajectory. First, we divide the
entire space into many sub-spaces with different resolutions
using the rule of a quad-tree, then give each sub-space a quad-
rant sequence. After that, inspired by the enlarged element
of XZ-ordering [17], we double the height and width of each
sub-space towards the upper-right corner to cover trajectories
with different sizes. Finally, to approximately reflect the shape
of a trajectory, we evenly divide the enlarged element into four
sub-quads. We use the combination of sub-quads as an index
space to represent trajectories and give each combination a
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position code to represent its related position in an enlarged
element, as shown in Figure 3(e). In this way, we can use an
irregular index space to represent a trajectory meticulously.

Quadrant Sequence. We adopt the rule of a quad-tree to
recursively divide the current index space into four equal quads
until the maximum resolution is reached, where the resolution
is the number of recursions. As shown in Figure 3(b), ‘2’ is
at 1-resolution and ‘00’ is at 2-resolution, respectively. Each
split will generate four sub-quads, and we number them from
0 to 3 like the order of a reversed ‘Z,’ as shown in Figure 3(a).
Each sub-space is associated with a quadrant sequence, such
as ‘00’, ‘30’ and ‘311’ shown in Figure 3(b). The length of a
quadrant sequence is equal to its resolution. A larger resolution
of a quadrant sequence means a finer area of index space. As
shown in Figure 3(b), ‘311’ represents an index space at 3-
resolution, and its area is smaller than the index space of ’30’.

Enlarged Element. However, a trajectory may intersect
more than one sub-quads and would be completely contained
by a big sub-quad, e.g., T2 in Figure 3(b) appears in ‘03’,‘11’
and ‘30,’ but the smallest sub-quad that can contain T2 is
the ‘root’. It is too large for T2, which may cause the query
processing tough to prune it by the space of ‘root’. Inspired
by XZ-Ordering, we extend each sub-quad to an enlarged
element by doubling the height and width of the quad towards
the upper-right corner. As shown in Figure 3(c), spaces with
light blue color are the enlarged elements of ‘03’ and ‘311’,
respectively. We use the MBR of a trajectory to locate the
smallest enlarged element that can cover the trajectory. As
shown in Figure 3(c), the red rectangles are the MBRs of T1

and T2, and the enlarged element of ‘03’ covers them. Thus,
T2 can be represented by the enlarged element of ‘03’ rather
than the space of the ‘root’, which makes the representation
of the trajectory’s MBR more acceptable.

We use s to stand for the quadrant sequence of the smallest
enlarged element. Because the expansion direction of an
enlarged element is towards the upper-right corner, the smallest
enlarged element covering the MBR is always expanded from
the sub-quad at the lower-left corner of the MBR. Thus, s is
a prefix of the maximum quadrant sequence generated by the
lower-left corner of the MBR. The length of s is determined
by the height and width of the MBR. It can be calculated by
Lemmas 1 and 2. Without losing generality, we normalize the
entire space range to an interval of 0-1.
Lemma 1. The most appropriate quadrant sequence s of an
MBR ((x1, y1), (x2, y2)) has a length of |s| = l or l + 1,
where, l = ⌊log0.5(max{x2 − x1, y2 − y1})⌋.
Lemma 2. Let w = 0.5l+1, if ⌊x1

w ⌋ ∗ w + 2 · w ≥ x2 and
⌊y1

w ⌋ ∗ w + 2 · w ≥ y2, then |s| = l, else |s| = l + 1.

Proof. Proofs of Lemmas 1 and 2 can refer to [17], [24].
Position Code. Similar trajectories usually have similar

shapes. However, the enlarged element covering the MBR
of a trajectory is still too large, which is not friendly to
describe the shape of a trajectory, so it cannot prune many
invalid trajectories during the query processing. As shown in
Figure 3(c), Q is a query trajectory that is contained by the
enlarged element of ‘03’, so all trajectories indexed by ‘03’
must be extracted from the database and compared with Q.
However, T1 is dissimilar to Q because T1 has a point p at
the left-upper corner of ‘03’ that is far away from Q. Thus, we
propose a concept of position code that uses an irregular index
space to reflect the shape of a trajectory. Then, we generate
meticulous position codes to avoid extracting trajectories with
dissimilar shapes. We evenly divide each enlarged element into
four sub-quads, marked as a, b, c, d, respectively, as shown in
Figure 3(d). We use the combination of sub-quads to represent
trajectories. Each combination corresponds to an index space,
as shown in Figure 3(e). Note that any index space of an
enlarged element at a resolution lower than the maximum
resolution must contain at least two sub-quads, because if
an index space contains only one sub-quad, it would be
represented by an enlarged element at a larger resolution.

An enlarged element represents the MBRs whose lower-left
corners must locate in quad-a. Thus, according to the positions
of their upper right corners, there are only four kinds of MBRs
in an enlarged element. As shown in Figure 3(d), the upper
right corners of the MBR-1, MBR-2, MBR-3, and MBR-4, are
located in the quads of a, b, c, d, respectively. We enumerate all
kinds of trajectories in each MBR, obtaining ten combinations
of sub-quads. We give each combination a position code, as
shown in Figure 3(e), where trajectories in ‘10’, ‘1’, ‘2’, and
from ‘3’ to ‘9’ are equipped with the MBR-1, MBR-2, MBR-
3, and MBR-4, respectively. Note that the index space of ‘10’
contains only quad-a. It occurs in the maximum resolution.

Discussion. In a nutshell, a trajectory would be repre-
sented by the form of (quadrant sequence, position code).
For example, T1 and T2 are represented by (‘03’, 2) and
(‘03’, 7), respectively. It helps query processing quickly prune
trajectories with dissimilar shapes. Because similar trajectories
usually have similar spatial shapes, if a quad is far away from
a query trajectory, then the index spaces containing this quad
can be pruned (the reason is discussed in Lemma 10). Given
a query trajectory Q, assuming that quad-c is far away from
Q, such that we do not need to extract trajectories indexed
with position codes 2, 4, 5, 6, 8, 9. Assuming that trajectories
are evenly distributed in ten index spaces, we can reduce I/O
overhead by 60% ( 6

10 ). Analogously, for quad-a, quad-b, and
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quad-d, we can reduce I/O overhead by 80%, 60%, 50%,
respectively. Moreover, if two or three quads are far away from
Q, we can eliminate more index spaces. For example, if quad-
b and quad-c are both away from Q, except for position codes
10 and 3, we can discard other index spaces of the enlarged
element so that we reduce I/O overhead by 80%. Analogously,
for quad-ab, ac, ad, bd, cd, abc, abd, acd, bcd, we can reduce
I/O overhead by 100%, 100%, 90%, 80%, 80%, 100%, 100%,
100%, 90%, respectively. On average, we reduce I/O overhead
by 83.6%. In Section VI-D gives an experimental result.

C. Encoding

Key-value data stores use the form of key-value pair to
store data. We devise a bijective function to generate the
key to support storage and query better. The advantages of
our encoding are: (1) the index space of a trajectory can
be calculated by a mathematical formula without maintaining
the index structure in the memory. Thus, we can reduce
much maintenance cost to manage trajectories; (2) the storage
overhead is less than the string encoding. For example, for
an index space at 16-resolution, the string encoding requires
16 bytes for a quadrant sequence and one byte for a position
code, while our encoding only requires an integer of 8 bytes
so that we can reduce storage overhead on a key by about
53% ( 17−817 ); (3) using the simple concatenation will make the
encoding discontinuous, which will increase the number of key
range searches when querying and reduce the performance.

Main idea. The smaller the resolution, the larger the index
space, and the lower similarity between two index spaces at
smaller resolutions. Thus, we use a deep-first strategy to design
our encoding, ensuring that the longer the same prefix of two-
quadrant sequences, the closer their converted numbers are.
The algorithm begins at the root node and numbers index
spaces in depth-first visiting order. As described in Section
IV-B, every enlarged element at i-resolution (i < r, r is
the maximum resolution) has nine index spaces, and at r-
resolution it has ten index spaces, respectively. As shown in
Figure 4(a), the maximum resolution is 2. We first number
index spaces at ‘0’ from 0 to 8 and number index spaces at
‘00’ from 9 to 18. Finally, we number ‘33’ from 196 to 205.

Numbering. In order to number all index spaces of XZ*,
we must guarantee that the interval between the converting
values of any two index spaces (s1, p1) and (s2, p2) can exactly
accommodate all index spaces between (s1, p1) and (s2, p2).
Lemmas 3 and 4 calculate the total number of the index spaces
under a quadrant sequence s with length l, where s = (q1...ql).

Lemma 3. The total number of quadrant sequences at reso-
lution i (0 < l ≤ i ≤ r) prefixed with s is

Nqs(i, l) = 4i−l, (1)

p3

(a) Extracting DP-Features (d1, d2  > θ ). (b) Filtering by DP-Features.

T

Q(2)

(4)

(1)

(3) Representative points

Representative bboxes
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where l = |s| is the length of s and implies its resolution.

Lemma 4. The number of index spaces prefixed with s is

Nis(l) = 10∗Nqs(r, l)+

r−1∑
i=l

9∗Nqs(i, l) = 13×4r−l−3, (2)

where r is the maximum resolution. Notably, Nis(l) can
also represent the number of index spaces prefixed with any
quadrant sequence with the length of l.

Proof. There are 4l quadrant sequences at l-resolution, and 4i

quadrant sequences at i-resolution. Therefore, there are 4i−l

quadrant sequences with length i prefixed with a same quad-
rant sequence with length l, as shown in Figure 4(b). Thus,
the total of index spaces prefixed with s is Equation(2).

Given a quadrant sequence s = ⟨q1...qi...ql⟩ and a position
code p of a trajectory, we can calculate its index value by
Definition 5. It accumulates each quadrant number qi (i < l)
in s multiplies Nis(i) and plus its corresponding index spaces
(i.e.,

∑l
i=1(qi ∗Nis(i) + 9)), then plus ql ∗Nis(l) + p− 1 to

obtain the final index value. Thus, our encoding is as follows:

Definition 5. (Index value). The index value V (s, p) of a
quadrant sequence s and a position code p is

V (s, p) =

l−1∑
i=1

[qi ∗Nis(i) + 9] + ql ∗Nis(l) + p− 1. (3)

As shown in Figure 3(c) and Figure 3(e), index values of T1

and T2 are V (‘03’, 2) = 40 and V (‘03’, 7) = 45, respectively.
V is a bijection function because each index space has only

one index value, and an index value has only one index space.
Moreover, the lexicographical order of quadrant sequences and
position codes corresponds to the less-equal order of index
values, so V retains the spatial characteristics of XZ*.

D. DP Features

Trajectories in the real world may contain many points, so
the computation of similarity is expensive. However, many
consecutive points may be very close to each other. Thus,
we use the Douglas-Peucker (DP) algorithm [23] to reduce
the size of trajectories without affecting the accuracy. DP is
an algorithm with low complexity and can be effortless to
implement. It finds representative points of a trajectory. The
distance from any points between the line of two successive
representative points is lower than a predefined distance θ.
As shown in Figure 5(a), after three iterations, we obtain four
representative points (red points in Figure 5(a)(4)) to represent
the trajectory. Besides, we further extract the bounding box
(abbreviated as bbox, it is not necessarily parallel to the
coordinate axis) to cover points among any two successive rep-
resentative points, as the red bboxes shown in Figure 5(a)(4).



E. Storing

We use an irregular index space to represent a trajectory
and assign an index value for the index space. Thus, we can
use the index value as the spatial key for storing and querying
trajectories. The key is combined as follows,

rowkey = shards+ index value+ tid,

where ‘+’ is the concatenation operation; shards is a hash num-
ber to decentralize trajectories, which can avoid hot-spotting
problem; index value represents the spatial information of the
trajectory, which is calculated by Equation (3); tid is the
identifier of a trajectory. TABLE I

SCHEMA OF TRAJECTORY TABLE

rowkey value
tid points dp-points dp-mbrs ...

01110t1 t1 MultiPoint(...) List⟨Integer⟩ MultiPolygon(...) ..
11011t2 t2 MultiPoint(...) List⟨Integer⟩ MultiPolygon(...) ...

Table I gives the schema of a trajectory table, where tid
is the identifier and points stores the points of a trajectory.
Notably, to efficiently execute the trajectory similarity search,
we also need columns to store some valuable features, e.g.,
dp-points records the indexes of DP-points in the raw points
and dp-mbrs stores the MBRs of DP-features. Note that most
key-value stores have an automatic partitioning strategy, so this
paper does not take time to design a partitioning strategy.

V. QUERYING PROCESSING

In this section, we describe how trajectory similarity queries
are processed. Specifically, we first give our main idea to
avoid redundant searches in Section V-A. Based on the main
idea, two pruning strategies are proposed, namely Global
Pruning (Section V-C) and Local Filtering (Section V-D).
Furthermore, in Section V-E, we will show how the pruning
strategies improve the two typical trajectory similarity queries,
i.e., Threshold Similarity Search, and Top-k Similarity Search.

A. Main Idea

Trajectories are stored by the step of Section IV-E, and
searched by the row keys. Each row key is equipped with an
index value that represents an index space covering the shape
of a trajectory. Query processing eliminates index spaces that
are dissimilar to the query trajectory and avoids calculating
complicated similarities with unnecessary trajectories.

In Section V-B, we propose Lemma 5, which is fundamental
for other lemmas of Section V-C, Section V-D and Section VII

In Section V-C, we design the global pruning strategy to
delicately filter out index spaces containing trajectories that are
dissimilar to a query trajectory. An index space is represented
by an enlarged element and a position code. Section V-C1
gives Lemmas to prune out unnecessary enlarged elements,
and Section V-C2 introduces Lemmas to filter out impossible
position codes of remaining enlarged elements.

After executing the global pruning, we extract trajectories
of the remaining index spaces in each region. In Section
V-D, to alleviate the computation of complicated similarity,
we propose local filtering based on representative features of
trajectories to filter out dissimilar trajectories efficiently.

Based on global pruning and local filtering, we implement
two frequently-used similarity searches in Section V-E. The
performance of our Lemmas increases step by step, but the
computation also goes up. Thus, we execute Lemmas from
simple to complex to reduce the computation.

B. Basic Lemma and Definition
We give fundamental Lemma and Definitions, which are

very useful for global pruning and local filtering.
Lemma 5. If ∃t ∈ T1, such that d(t, T2) > ε, then we have
f(T1, T2) > ε and T1 is dissimilar to T2, where d(t, T2) =
min
q∈T2

d(t, q).

Proof. f(T1, T2) = DF (T1, T2). As described in Definition 2,
it is easy to know that DF (T1, T2) ≥ d(t, q), where q of T2 is
the matching point of t, so that we have d(t, T2) ≤ d(t, q) ≤
DF (T1, T2). Accordingly, if d(t, T2) > ε, then f(T1, T2) =
DF (T1, T2) > ε, i.e., T1 is dissimilar to T2.

Definition 6. (SEE(MBR)). It represents the smallest en-
larged element that covers the MBR.

Definition 7. (Ext(MBR, ε)). It represents the space that
extends the MBR by ε.

For example, as shown in Figure 6(a), the red rectangle is
an extended MBR of a trajectory by extending ε.

C. Global Pruning

Global pruning aims to prune irrelevant index spaces. An
index space is represented by an enlarged element and a
position code. Thus, we first use Lemmas 6-9 to filter irrelevant
enlarged elements out, then we use Lemmas 10-11 to select
candidate position codes of the remaining enlarged elements.

1) Candidate Enlarged Elements: The trajectory has a spa-
tial shape. The shapes of similar trajectories are usually similar
to that of the query trajectory. Thus, extracting trajectories in
too large or too small index spaces is unnecessary. Definitions
8 and 9 determine the resolutions at which an enlarged element
can cover similar trajectories.

Calculated by the way of Section IV-B, we can obtain the
smallest enlarged element that covers Ext(Q.MBR, ε) of a
query trajectory Q, i.e., SEE(Ext(Q.MBR, ε)).

Definition 8. (MinR). MinR is the resolution of
SEE(Ext(Q.MBR, ε)).

As shown in Figure 6(a), SEE is the smallest enlarged
element that covers Ext(Q.MBR, ε).

Lemma 6. Any trajectory contained in an enlarged element
with a resolution that is lower than MinR cannot be similar
to the query trajectory Q.

Proof. If we divide the enlarged element at a lower resolution
than MinR into four quads, Ext(Q.MBR, ε) occurs only in
one quad. As shown in Figure 3(e), a trajectory T contained in
an enlarged element with a resolution lower than the maximum
resolution occupies at least two quads. Thus, there is always a
point p of T appears in a quad that disjoints Ext(Q.MBR, ε),
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so that d(p,Q) > ε. Based on Lemma 5, f(T,Q) ≥ d(p,Q) >
ε, such that T is dissimilar to Q.

As shown in Figure 6(a), when the resolution is MinR−1,
Ext(Q.MBR, ε) only be covered by quad-a. Points in quads
b, c and d are far away from Q, so that trajectories have points
in quad-a, b, or c are dissimilar to Q.

Assume that the width and height of an enlarged element are
w1 and h1, respectively. The height and width of the MBR of a
query trajectory are h and w. The maximum distance between
the enlarged element and the MBR is the smallest when the
enlarged element is located in the center of the MBR, as shown
in Figure 6(b). We use d0 = (h−h1)/2 and d1 = (w−w1)/2
to represent the distance of height and width, respectively.

Definition 9. (MaxR). MaxR is a resolution, which satisfies
that d0 and d1 of an enlarged element at MaxR-resolution are
both lower than or equal to ε while d0 or d1 of any enlarged
element at (MaxR+ 1)-resolution is greater than ε.

Lemma 7. ∀ trajectory T that is at a bigger resolution than
MaxR cannot be similar to the query trajectory.

Proof. There is at least one point q of the query trajectory
must be attached to the edges of its corresponding MBR. The
maximum distance of the points on the edges to the trajectory
covered in the enlarged element is inevitably greater than or
equal to d0 or d1. Thus, if d0 or d1 is greater than ε, then
d(q, T ) > ε. Based on Lemma 5, the query trajectory cannot
be similar to the trajectories of enlarged elements at resolutions
that are bigger than MaxR.

As shown in Figure 6(b), q0 and q1 are attached to the MBR
of Q, such that f(Q,T ) ≥ d(q0, T ) ≥ d0 and f(Q,T ) ≥
d(q1, T ) ≥ d1. If d0 or d1 > ε, then Q is dissimilar to T .

The number of enlarged elements with resolutions between
MinR and MaxR is still large. We further prune enlarged
elements by Lemmas 8 and 9 that filter enlarged elements by
their distances to the query trajectory.
Lemma 8. If enlarged elements do not intersect with
Ext(Q.MBR, ε), then they have no trajectories that are
similar to Q because the distance of any point in their index
spaces to the query trajectory is greater than ε.

Definition 10. (minDistEE). It is the minimum possible dis-
tance between a trajectory Q and an enlarged element (EE).

minDistEE(Q,EE) = max
p∈Q.MBR∧Q

d(p,EE),

where p is point at the edge of the MBR and d(p,EE) denotes
the distance bewteen p and the enlarged element.

Each edge of the MBR of a trajectory contains at least one
point. Thus, minDistEE is the largest minimum distance
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between the points attached to the MBR and the enlarged
element. Figure 6(c) gives an example of the minDistEE.

Lemma 9. If minDistEE(Q,EE) > ε, then ∀T ∈ EE is
dissimilar to Q, where EE is an enlarged element.

Proof. ∀T ∈ EE, ∀t ∈ T , we have minDistEE(Q,EE) ≤
d(t, Q) ≤ f(Q,T ). Thus, if minDistEE(Q,EE) > ε, then
f(Q,T ) > ε, Q is dissimilar to T .

As shown in Figure 6(c), minDistEE(Q,EE) =
d(q1, EE). If ε < minDistEE(Q,EE), thend(q1, T ) ≤
f(Q,T ), i.e., Q is dissimilar to T .

2) Candidate Position Codes: The enlarged element is still
too large to represent a trajectory. Thus, we proposed a concept
of the position code in Section IV-B, which uses a combination
of four sub-quads as an index space, as shown in Figure 3(e).
In this part, we will introduce the pruning strategies to filter
out uncorrelated index spaces of candidate enlarged elements ,
which can further narrow the search range of query processing.

Lemma 10. Assuming that, sq is a sub-quad, which is used
to form an index space. If its distance to the query trajectory
d(sq,Q) > ε, then the index space can be pruned.

Proof. ∀T covered by an index space containing sq has at
least one point t in sq, such that d(t, Q) ≥ d(sq,Q). Thus,
if d(sq,Q) > ε, then f(T,Q) ≥ d(sq,Q) > ε, so this index
space can be pruned.

In Figure 7(a), the distance from quad-c to Q is d(c,Q).
t ∈ c and d(t, Q) ≥ d(c,Q) > ε, so T is dissimilar to Q.

After pruning index spaces containing quads that are far
away from Q, we further eliminate remaining index spaces
(IS) by their distances to Q, i.e., minDistIS.
Definition 11. (minDistIS).

minDistIS(Q, IS) = max
p∈Q.MBR∧Q

d(q, IS).

Lemma 11. If minDistIS(Q, IS) > ε, then the index space
of IS can be pruned.

Proof. ∀T ∈ IS, ∀t ∈ T , we have minDistIS(Q, IS) ≤
d(t, Q) ≤ f(Q,T ). Thus, if minDistIS(Q, IS) > ε, then
f(Q,T ) > ε, i.e., Q is dissimilar to any trajectory in IS.

Figure 7(b) shows an example. f(Q,T ) ≥ d(q1, (‘03’, 3)) =
minDistIS(Q, (‘03’, 3)) > ε, so T is dissimilar to Q.

D. Local Filtering

After filtering out unnecessary index spaces by the Lemmas
of Section V-C, we extract trajectories indexed by the remain-
ing index spaces in each region of the database. Local filtering
helps to eliminate dissimilar trajectories in each region with
minimal computational cost.



Algorithm 1: Global Pruning: GP(Q, ε)
Input: A query trajectory: Q, a threshold ε.
Output: Index values: values.

1 remaining = new FIFO queue(); value = ∅;
2 remaining.insert(RootElements.children);
3 while remaining ̸= ∅ do
4 e = remaining.pop;
5 if MinR ≤ e.resolution // Lemma 6 then
6 if minDistEE(Q, e) ≤ ε //Lemma 9 then
7 foreach ind s ∈ e.index space do

// Lemma 10 and Lemma 11
8 if ∀ sq ∈ ind s and d(sq,Q) ≤ ε then
9 if minDistIS(Q, ind s) ≤ ε then

10 values.add(ind s.index value);

11 if e.resolution < MaxR //Lemma 7 then
12 foreach child ∈ e.children do
13 if child intersects Ext(Q.MB, ε)) then
14 remaining.insert(child); //Lemma 8

15 return values;

Lemma 12. If Q is similar to T, the distance of the start point
of Q and T must be less than or equal to ε, and the distance
of end point of Q and T must be less than or equal to ε.

Proof. Based on Definition 2, f(Q,T ) = DF (Q
n, Tm) ≥

d(q1, t1) and DF (Q
n, Tm) ≥ d(qn, tm). If T is similar to Q,

then f(Q,T ) ≤ ε, d(q1, t1) and d(qn, tm) must be ≤ ε.
It is time-consuming to calculate the similarity of two

trajectories because all points of Q and T must be visited.
Thus, we use DP features to represent a trajectory, which
efficiently helps query processing filter dissimilar trajectories.

Note again that we calculate the DP features of a trajectory
before storing, so we do not need to calculate DP features of
extracted trajectories again in the query processing.

We use T.P = (p1, ..., pk) to denote the representative
points of a trajectory T , and T.B = (bbox1, ..., bboxk−1) to
represent the representative bboxes of T , as shown in Figure 5.

Lemma 13. If ∃p ∈ T1.P , such that d(p, T2.B) > ε, then we
have f(T1, T2) > ε.
Proof. Because d(p, T2) ≥ d(p, T2.B), if d(p, T2.B) > ε,
then d(p, T2) > ε. Based on Lemma 5, f(T1, T2) > ε.

As shown in Figure 5(b), the distance from p3 of T.P to
Q.B is greater than ε, so that T is dissimilar to Q.

Each bbox has four edges, the distance between an bbox and
T.B of a trajectory is d(bbox, T.B) = max

edge∈bbox
d(edge, T.B).

Lemma 14. If ∃bbox ∈ T1.B, such that d(bbox, T2.B) > ε,
then we have f(T1, T2) > ε.

Proof. For ∀bbox ∈ T1.B, assuming that q ∈ edgei, q is a
point of T1 and d(edgei, T2.B) is the maximum distance than
other edges of the bbox, we have d(q, T2) ≥ d(edgei, T2) ≥
d(bbox, T2) ≥ d(bbox, T2.B). Thus, if d(bbox, T2.B) > ε,
then d(q, T2) > ε, so f(T1, T2) > ε.

As shown in Figure 5(b), the distance from the bbox2 of
Q.B to T.B is greater than ε, so that Q is dissimilar to T .

E. Processing
Based on the lemmas and definitions, we implement two

similarity searches: Threshold Similarity Search and Top-k
Similarity Search. We search from the root of the XZ* index
and filter irrelevant index spaces by the global pruning, then
execute local filtering for each extracted trajectory. Note again

Algorithm 2: Local Filtering: LF(Q, ε)
Input: Query trajectory: Q, threshold ε.

1 Function filter (T)
2 if d(T.start point,Q.start point) ≤ ε //Lemma 12 then
3 if d(T.end point,Q.end point) ≤ ε then
4 if DP features of T and Q do not satisfy
5 Lemmas from 13 to 14 and f(Q, T ) ≤ ε then
6 return false;
7 return true;
8 End Function

Algorithm 3: Threshold similarity search: sim(Q, ε)
Input: A query trajectory: Q, a threshold ε.
Output: Trajectories: results.

1 index values = GP (Q, ε); scanner = new Scanner();
2 scanner.addScanRange(index values);
3 scanner.addFilter(LF (Q, ε));
4 return scanner.execute().results;

that the performance of our Lemmas increases step by step,
but the computation also goes up. Thus, we execute lemmas of
pruning strategies from simple to complex. Besides, for Top-k
Similarity Search, we use a best-first (BF) algorithm to find
similar trajectories from near to far. Additionally, the complex-
ity of query is constant-level, because the query is transformed
as a set of key ranges using the fixed spatial partition and
encoding method, then retrieves the corresponding contents
from a KV store. As a result, the algorithm complexity does
not change with the increase of the number of trajectories.
Threshold Similarity Search. Given a query trajectory Q and
a threshold ε, we first generate candidate index values based
on global pruning, as shown in Algorithm 1. The algorithm
starts at the root, the resolution of each successive child
gets larger. Lines 5 and 11 guarantee that only the enlarged
elements at resolutions between maxR and minR would be
candidate enlarged elements. In lines 6 and 13, based on
Lemmas 8 and 9, we prune dissimilar enlarged elements.
In lines 7-10, we prune irrelevant index spaces by Lemmas
10 and 11. Second, we extract trajectories indexed with the
candidate index values on each region and filter out dissimilar
trajectories by executing local filtering (Algorithm 2). After
that, we refine the remaining trajectories by calculating their
similarities with Q. Algorithm 3 gives processing of Threshold
Similarity Search, where line 1 generates candidate index
values and creates a scanner for extracting trajectories on the
database, line 3 adds local filtering to the scanner, and line 4
visits trajectories and executes local filtering in each region.
Top-k Similarity Search. According to the definition of
similarity methods, e.g., Fréchet and Hausdorff methods, the
more similar of two trajectories, the smaller the distance.
Therefore, as shown in Algorithm 4, our top-k trajectory
similarity search uses a Best-First algorithm to find similar
trajectories from near to far. minDistEE(Q, e) is the distance
between a trajectory Q and an enlarged element e (Definition
10), minDistIS(Q, i) is the distance between a trajectory Q
and an index space i (Definition 11). EQ and IQ are the priority
queues for enlarged elements and index spaces. We always pop
the nearest enlarged element from the priority queue of EQ
(Line 5) and add index spaces into IQ. If the minDistEE of
remaining enlarged elements is greater than the minDistIS
of IQ, in Line 14, we search trajectories that are indexed by



Algorithm 4: Top-k similarity search: kNN(Q, k)
Input: A query trajectory: Q, an integer k.
Output: k priority trajectories: results.

1 ε = MAX VALUE; result = new priority queue(k);
2 EQ = ∅; IQ = ∅;
3 EQ.push(root,minDistEE(Q, root));
4 while EQ ̸= ∅ do
5 e← EQ.pop();
6 if IQ ̸= ∅ and e.minDistEE > IQ.minDistIS then
7 while IQ ̸= ∅ do
8 if IQ.minDistIS > e.minDistEE then
9 . break; //go to Line 16;

10 i← IQ.pop();
11 if i.minDistIS > ε then
12 return results;
13 if !filter(i.indexSpace, ε)//Lemmas 10-11 then
14 results.add(search(i.indexV alue(), LF (Q, ε), k));

if results.size() == k then
15 ε = results.maxDistance;

16 if !filter(e, ε) //Lemmas 6-9 then
17 IQ.add(e.indexSpaces,minDistIS(Q, e.indexSpaces))

foreach child ∈ e.children do
18 EQ.add(child,minDistEE(Q, child));

19 return results;
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Fig. 8. Instantiation of TraSS.
the optimal index value (Lines 8-13) of IQ from the database
and execute the local filtering LF (Q, ε) to eliminate dissimilar
trajectories. If the number of extracted trajectories reaches k,
we update the current maximum similarity distance ε from the
results, and use ε to further prune enlarged elements and index
spaces by Lemmas 6-11. If the minDistIS of IQ is greater
than EQ.minDistEE (Lines 8-9), we continue to search EQ
(Lines 16-18) for obtaining more near index spaces. If the
minDistIS > ε (Lines 11-12), we finish the top-k similarity
search, because the similarity distance of trajectories in the
next iteration would always be greater than ε, and they cannot
be similar to the query trajectory.

VI. EVALUATION

INSTANTIATION. As shown in Figure 8, we implement
TraSS based on HBase, a popular key-value store. Firstly,
trajectories are indexed using appropriate index spaces. Then,
we use Douglas-Peucker (DP) algorithm to pre-calculate DP
features of trajectories. After that, we convert trajectories to
puts and insert all puts into HBase table regions. When
executing the similarity search, we first calculate the DP
features of the query trajectory. Then, we push down global
pruning (G-Pruning) and local filtering (L-Filtering) into the
coprocessor of HBase. Finally, we return the query results to
the client. For more details about TraSS, please refer to [24].
Baselines. We evaluate our work with other state-of-art works,
i.e., TraSS (our work), DFT [19] (VLDB 2017), DITA [20]
(SIGMOD 2018), JUST [9] (ICDE 2020), and REPOSE [26]
(ICDE 2021, which only support top-k similarty search).
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Fig. 9. Efficiency of Threshold Similarity Search.

Datasets. We use two real and five synthetic trajectory datasets
to evaluate the efficiency of TraSS: (1) TDrive [2], which
contains 321,387 taxi trajectories of Beijing over two weeks,
China (752MB); (2) Lorry, which contains 4,394,397 JD
logistic lorry trajectories of Guangzhou, China (136GB); and
(3) Synthetic, to verify the scalability of TraSS, we use five
synthetic datasets generated by copying i times of the Lorry
dataset. Figure 12 shows the distribution of TDrive and Lorry.
Setting. We randomly pick 400 query trajectories from each
dataset, respectively, and take the median processing time as
the final results. We vary the threshold ε from 0.001 to 0.02
to evaluate the efficiency of threshold similarity search in
Section VI-A, and vary the size of k from 50 to 250 to evaluate
the efficiency of top-k similarity search in Section VI-B. In
Section VI-C, we evaluate the effect of our pruning strategies.
In Section VI-D, we will evaluate the performance of the XZ*
index. Next, in Section VI-E, we use five synthetic datasets
to evaluate the scalability. The entire index space of the XZ*
index covers the earth. The default maximum resolution is 16,
and the predefined distance for DP features is 0.01 (mostly
used in existing works). All experiments are conducted on a
cluster with five nodes, and each node is equipped with an
8-core CPU, 32GB RAM, and 1T disk.

A. Threshold Similarity Search

We evaluate the performance of threshold similarity search
by comparing the query time and the candidates after pruning.
Figure 9(a) shows the query time and Figure 9(b) displays the
number of candidates (remaining trajectories after executing
the pruning strategies, not the final answer) of different solu-
tions. We have the following observations: (1) with the thresh-
old increase, it takes more query time as a large threshold
leads to more visited trajectories; (2) our solution outperforms
other solutions, even by one or two orders of magnitude. As
shown in Figure 9(a), when ε = 0.001 on T-Drive, DFT
takes 5,241 milliseconds and DITA takes 166 milliseconds
while TraSS takes 11 milliseconds. This is because TraSS
proposes an efficient index structure, which is much better
than the R-tree used in DFT and a trie-like index used in
DITA. Based on XZ* index, the query processing of TraSS
can efficiently prune dissimilar trajectories, and the scale of
candidates after pruning is much smaller than other solutions,
as shown in Figure 9(b). DFT uses the index to obtain a
bitmap of candidate trajectories, collects the bitmap at the
master node, and then extracts data by bitmap to verify the
similarity, causing much shuffle and computation. DITA uses
MBR coverage filtering to filter the search range. However,
a trajectory may appear in a small area of its representative
MBR. Thus, MBR coverage filtering prunes fewer trajectories
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Fig. 10. Efficiency of Top-k Trajectory Similarity Search.
than XZ*; (3) Although JUST applies many pruning strate-
gies to avoid much computation, which is more efficient than
DFT and DITA. However, the XZ-Ordering used in JUST
is not finer than XZ*, so JUST needs to scan more trajectories
than TraSS. Moreover, all pruning strategies of TraSS are
pushed down to the coprocessor of HBase while JUST does
not. Thus, TraSS is better than JUST .

B. Tok-k Similarity Search

As presented in Figure 10, we conduct top-k trajectory
similarity search experiments to study the effect of the number
k. It can observe in Figure 10(a) that the performance of our
solution is the best compared with others. As shown in Fig-
ure 10(b), DFT and REPOSE retain many candidate trajec-
tories, resulting in they are much slower than our solution. The
reason is that DFT randomly selects c∗k (the default value of
c is 5) trajectories from the partitions that intersect the query
trajectory. Then it obtains a threshold to verify trajectories
covered by the threshold. Finally, DFT takes top-k trajectories
from the candidates. However, most trajectories in the T-
Drive dataset have a large MBR, which causes many partitions
intersecting the query trajectory. Thus, DFT always gets a
large threshold that covers massive candidates. Especially,
REPOSE builds the RP-Trie (reference point trie) index on
pivot trajectories, and the selection of pivot trajectories has a
substantial effect on the pruning performance. However, the
spatial span of the lorry dataset covers china, resulting in the
RP-Trie needing to build a large structure, which has greatly
affected its pruning performance. Besides, DITA performs
better than DFT on the T-Drive dataset, but it is not good on
the Lorry dataset because DITA builds a large index for the
large Lorry dataset, and each node of the index contains many
trajectories, which causes much time to search candidates.
Both DITA and JUST are slower than TraSS. The reason is
that they visit more trajectories to obtain candidates and need
more time to calculate the final answer from the remaining
candidates than TraSS. Benefit from XZ* index, TraSS
can generate fine-grained scan ranges to cover candidates,
which helps TraSS to obtain candidates by visiting only a
few trajectories, so TraSS spends less time to execute top-k
similarity search.

C. Effect of Pruning Strategies.

We evaluate the effect of pruning strategies by three met-
rics: pruning time; retrieved trajectories, which reflects the
filtration capacity of global pruning; precision, which is the
ratio of final answers to candidate trajectories. As shown
in Figure 11(a), TraSS takes the lowest pruning time than
others. Because (1) global pruning consumes very little to

generate index values for retrieval trajectories, which does not
require much calculation; (2) the local filtering must check
trajectories retrieved from the database. After global pruning,
TraSS retrieves fewer trajectories than others, as shown in
Figure 11(b). Thus, TraSS spends less time in local filtering.
Besides, as displayed in Figure 11(c), benefiting from the
filtration capacity of local filtering, TraSS obtains fewer false
hits than other solutions.
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Fig. 11. Pruning Strategies of Different Solutions (ε = 0.01).

D. Effect of XZ* Index

Distribution. The XZ* index uses index spaces of different
resolutions to represent trajectories. As shown in Figure 12(a),
most trajectories are distributed at resolutions from 10 to 16
because the driving ranges of many trajectories are from 0.5km
(corresponding resolution is about 16) to 78km (corresponding
resolution is about 10). There is a peak at 19-resolution be-
cause many taxis stay at interest places to wait for customers,
resulting in their trajectories only having points with the
same latitude and longitude so that they are always covered
by the maximum resolution. As shown in Figure 12(b), we
use position codes to subtly represent the trajectory, which
improves the granularity of the index space.
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Fig. 12. Distribution of Trajectories.

Overhead. Figure 13 presents the indexing time of different
solutions. TraSS and JUST both adopt the static index
structure, which does not spend time adjusting its structure.
In contrast, DFT , DITA and REPOSE use dynamic index
structures, which takes much time to adapt to the dataset
by adjusting the index structure. Thus, the indexing time of
DFT , DITA and REPOSE is higher than TraSS and
JUST , especially in the large dataset, i.e., Lorry. Figure 13(c)
shows the average storage overhead of a rowkey. TraSS
uses the integer encoding, TraSS-S uses the string encoding
to generate keys, which requires more overhead than integers.
Our encoding is more space-efficient than the string encoding.
Especially, for Tdrive and Lorry, our encoding reduces 32%
and 27% of overhead on rowkeys, respectively.
Varying of Resolutions. In this section, we evaluate the per-
formance of different maximum resolutions. We use selectivity
to describe the representative of the XZ* index. Selectivity is
the ratio of index values to that of the row keys. It represents
the degree of difference of the data in the index column. As
shown in Figure 14(a) and Figure 15(a), the selectivity of 14-
resolution is lower than others, which causes many trajectories
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Fig. 13. Overhead of Different Solutions.
to be selected during the query processing. However, if the
maximum resolution is large, the query processing requires
more time to generate the query ranges because the higher the
selectivity, the more scattered the index values. In addition,
when executing similarity queries, the greater the resolution,
the fewer number of trajectories obtained in each iteration,
resulting in the number of iterations increased, thereby in-
creasing the query time, as shown in Figure 14(b)(c) and
Figure 15(b)(c).
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Comparing with XZ-Ordering. We also integrate the global
pruning and local filtering into XZ-Ordering. As shown in
Figure 16(a), XZ* index outperforms XZ-Ordering. Besides,
XZ-Ordering equipped with our pruning strategies has a better
performance than that of JUST. As shown in Figure 16(b),
XZ* index can avoid retrieving many invalid trajectories than
XZ-Ordering, so it outperforms the XZ-Ordering. Actually,
on Tdrive and Lorry dataset, we reduce 66.4% and 44.7% of
retrieved trajectories than XZ-Ordering, respectively.
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Fig. 16. Comparing with the XZ-Ordering index (ε = 0.01).

E. Scalability

Data size. To evaluate the scalability of TraSS, we use five
synthetic datasets generated by copying i times of the Lorry
dataset. As shown in Figure 17(a), the indexing time linearly
grows because we must index more trajectories. As both
DITA, DFT and REPOSE rely heavily on memory, they are
unable to support a large amount of data in our experimental
environment. As shown in Figure 17(b)(c), as the increase

of data size, the query time of threshold and top-k similarity
search is growing because we must visit more trajectories.
Excitingly, the query time of TraSS is still small and the
advantage of TraSS becomes more obvious.
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Tail Latency. We take the 99th percentile of the query result
to show the tail latency. As shwon in Figure 18, the tail latency
of TraSS is lower than others.
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Shards. In Section IV-E, we introduced the design of schema
for managing massive trajectories in HBase, where the shards
is a hash number that can avoid data skew problem. As shown
in Figure 19, we can observe that shards = 8 performs better
than others because if the shards is too small, many similar
trajectories may be stored in the same region, which results
in the data skew problem. In contrast, if the shards is too
large, the similar trajectories may be scattered in many regions,
resulting in a high communication cost. The shards = 8 is
an agreeable value because we only have five nodes.
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Fig. 19. Effect of Shards (ε = 0.015).

VII. OTHER MEASURES

We extend our solution to Haudorff and DTW. We first give
definitions of Haudorff and DTW, then discuss how pruning
strategies proposed in V can be used in Haudorff and DTW.

A. Extension on Hausdorff

Given two trajectories Q = (q1, ..., qn) and T = (t1, ..., tm),
the definition of Hausdorff is as follows:
Definition 12. (Hausdorff).

DH(Q,T ) = max{ n
max
i=1

d(qi, T ),
m

max
j=1

d(tj , Q)},

where d(qi, T ) = min
t∈T

d(qi, t) and d(tj , Q) = min
q∈Q

d(tj , q).

Pruning strategies. The Hausdorff distance also satisfies
Lemma 5, i.e., if ∃q ∈ Q, such that d(q, T ) > ε, then we have
DH(Q,T ) > ε.



Proof. As described in Definition 12, it is easy to know that
DH(Q,T ) ≥ n

max
i=1

d(qi, T ) ≥ d(q, T ), q is a point of Q. Thus,
if d(q, T ) > ε, then DH(Q,T ) > ε.

Except for Lemma 12, all other Lemmas proposed in
Sections V-C and V-D are based on Lemma 5. Therefore,
except for Lemma 12 is banned in Algorithm 2, the query
processing of Hausdorff is the same as that of the Fréchet.

B. Extension on DTW

Definition 13. (DTW). The definition of DTW is as follows:

DD (Qn, Tm) =



m∑
i=1

d(q1, ti) if n = 1

n∑
i=1

d(qi, t1) if m = 1

d(qn, tm) + min{DD(Qn−1, Tm),
DD(Qn, Tm−1), DD(Qn−1, Tm−1)}

,

Pruning strategies. The DTW distance satisfies Lemma 5
and Lemma 12. Therefore, both Lemmas proposed in
Sections V-C and V-D can be directly used in DTW.

Proof. There are three cases of the length of Q and T :
1) If n = 1, we have DD(Q,T ) ≥ d(q1, ti) ≥ d(q1, T );
2) If m = 1, we have DD(Q,T ) ≥ d(qi, t1) = d(qi, T );
3) If n,m > 1, we have DD(Q,T ) ≥ d(qi, tj) ≥ d(qi, T ),
where qi is a point of Q, and tj ∈ T is a matching point of q.

Thus, ∀q ∈ Q, we have that DD(Q,T ) ≥ d(q, T ).
Therefore, if ∃q ∈ Q, such that d(q, T ) > ε, then we
have DD(Q,T ) > ε, i.e., DD satisfies Lemma 5. Besides,
DD(Q,T ) ≥ d(q1, t1) and DD(Q,T ) ≥ d(qn, tm), so that
DD(Q,T ) also satisfies Lemma 12.

The query processing of DTW is the same as that of Fréchet.

C. Efficiency.

DITA does not support the Hausdorff distance, DFT does
not support the DTW, and REPOSE supports only top-k sim-
ilar search. Figure 20 shows the efficiency of our framework.
We can intuitively observe that in the Hausdorff and DTW
metrics TraSS is more outstanding than others.

0.001
0.005

0.010
0.015

0.020

(a) Threshold(Haus).

102

103

Q
ue

ry
 T

im
e 

(m
s) TraSS JUST DFT REPOSE DITA

50    100   
150   

200   
250   

(b) Top-k(Haus).

103

0.001
0.005

0.010
0.015

0.020

(c) Threshold(DTW).

102

103

50    100   
150   

200   
250   

(d) Top-k(DTW).

103

Fig. 20. Extension on Other Similarity Measures.

VIII. RELATED WORK

A. Trajectory Similarity Search

Trajectory data management systems with trajectory simi-
larity search can be divided into three categories:
Standalone-based Search. For example, Elias et al. [27]
propose an efficient method using an R-tree-like index to
support top-k trajectory similarity search. Ta et al. [28] propose
a new bi-directional mapping similarity (BDS) to address
the trajectory sample points not aligned problem. Torch [29]

designs an inverted index LEVI to support road network
trajectory top-k trajectory similarity search. Due to the limited
resources of a single machine, these standalone solutions can
hardly process prohibitively large trajectory data.
Hadoop/Spark-based Search. Built on ST-Hadoop [30], [31],
Summit [32] provides various trajectory queries, including top-
k trajectory similarity search. As Hadoop visits disks multiple
times, it may face an efficiency problem. To this end, a
lot of Spark-based trajectory data management systems have
emerged [19], [20], [26], [33], [34]. DFT [19] implements
a distributed query framework to process top-k trajectory
similarity search. DITA [20] designs a trie-like index in
Spark on pivot points to support trajectory similarity join and
threshold similarity query efficiently. UlTraMan [33] extends
Spark by seamlessly integrating a key-value store Chronicle
Map, which enables top-k trajectory similarity search. For
removing noise points, DISON [34] proposes a distributed
in-memory trajectory similarity search and join framework
on the road network. Aimed at reducing computing resource
waste, REPOSE [26] proposes a framework for processing top-
k trajectory similarity search on Spark. These Spark-based
systems build huge indexes and load all trajectory data in
memory. Thus their scalability is limited.
NoSQL and Key-value based Search. NoSQL-based trajec-
tory data management systems store trajectories in key-value
data stores [5]–[9]. They turn spatio-temporal information of a
trajectory into a one-dimensional key. Hence they are easy to
scale up. THBase [5] presents a coprocessor-based scheme for
big trajectory data management in HBase and can support top-
k trajectory similarity search efficiently. TrajMesa [8], [35] and
JUST [9] build XZ2 indexes based on GeoMesa [21] to support
trajectory similarity query and top-k trajectory similarity query.
However, most NoSQL-based systems build indexes based
on trajectory MBRs, resulting in they would scan many
unnecessary data when answering trajectory queries.

IX. CONCLUSION

This paper proposes TraSS, an efficient trajectory sim-
ilarity search framework in the key-value data store. We
utilize XZ* index to represent a trajectory in a key-value
data store elaborately and provide an efficient encoding for
XZ* to store and query trajectories in key-value data stores,
reducing the row key overhead up to 32%. We design ef-
ficient query processing, which can execute the trajectory
similarity searches without calculating the similarity of the
query trajectory to many unnecessary trajectories, reducing
the I/O overhead by up to 66.4%. Extensive experiments show
that TraSS outperforms state-of-the-art distributed solutions.
TraSS supports many trajectory similarity measures such as
Fréchet, Hausdorff, and DTW. Besides, XZ* index supports
spatial range query [24]. Interesting future work includes how
to support other metrics and other spatial queries.
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