JUST-Traj: A Distributed and Holistic Trajectory Data
Management System

Huajun Hel-?, Ruiyuan Li3?, Jie Bao?, Tianrui Li!, Yu Zhengl’2
ISouthwest Jiaotong University, Chengdu, China 2JD Intelligent Cities Research, China *Chonggqing University, China
hehuajun@my.swjtu.edu.cn;liruiyuan@whu.edu.cn;baojie3@jd.com;trli@swijtu.edu.cn;msyuzheng@outlook.com

ABSTRACT

With the rapid development of the Internet of Things (IoT), massive
trajectories have been generated. Trajectory data is beneficial for
many urban applications. This demo presents a holistic trajectory
data management system based on distributed platforms, such as
Spark and HBase, namely JUST-Traj. It provides a variety of in-
dexes to efficiently support spatio-temporal queries and analyses
on massive trajectories. Additionally, it provides a convenient SQL
engine to execute all operations (storage, queries, analyses) through
a SQL-like statement. Finally, we design a web portal for developers
and demonstrate different operations in the portal.

CCS CONCEPTS

« Information systems — Spatial-temporal systems; Query
languages for non-relational engines; Database query processing.

KEYWORDS

trajectory management, spatio-temporal query, trajectory analysis

ACM Reference Format:

Huajun He, Ruiyuan Li, Jie Bao, Tianrui Li, Yu Zheng. 2021. JUST-Traj:
A Distributed and Holistic Trajectory Data Management System. In 29th
International Conference on Advances in Geographic Information Systems
(SIGSPATIAL °21), November 2-5, 2021, Beijing, China. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3474717.3483990

1 INTRODUCTION

Various sensing devices and applications have collected massive tra-
jectories of moving objects in recent years. For example, more than
1TB GPS logs are generated by over 60,000 couriers of JingDong
each day [14], and T-Drive [16] contains 790 million trajectories
generated in Beijing over only three months. Trajectory data is
beneficial for many urban applications, e.g., traffic planning [7],
reachability analysis [8], and epidemic prevention [6]. Taking ad-
vantage of distributed platforms is one of the best ways to manage
large-scale trajectory data efficiently.

Existing works. In the last decade, existing works [1, 3,4, 12, 15]
leverage distributed computing platforms, e.g., Hadoop and Spark,
to query and analyze massive trajectories. First, they adopt a strat-
egy (e.g., STR) to assign trajectories into partitions. Then, they build

“Ruiyuan Li is the corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGSPATIAL °21, November 25, 2021, Beijing, China

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8664-7/21/11.

https://doi.org/10.1145/3474717.3483990

a local index in each partition and a global index over all partitions
to efficiently support spatio-temporal queries and analyses. How-
ever, they are arduous to support real-time data updates because
they may spend much time readjusting the index structure and
re-balancing the partitions when inserting a lot of new data. Thus,
they are hard to scale up. Distributed NoSQL (Not Only SQL) data
stores, such as HBase, are widely used to manage massive data on
the disk. They can query data from a vast dataset efficiently and
re-balance data nodes automatically. However, they do not support
trajectory data analyses natively. Besides, applications always need
various queries and analyses, which may require executing oper-
ations on different platforms, e.g., querying data from HBase and
analyzing data on Spark, struggling for a convenient way.

Our solution. Building on our previous works (i.e., JUST [9] and
TrajMesa [10, 11]), we develop a distributed and holistic trajectory
data management system, namely JUST-Traj. JUST provides a uni-
fied platform based on Spark and a NoSQL data store. It can execute
spatio-temporal data queries and analytics through a convenient
SQL engine. TrajMesa provides three spatio-temporal indexes to

efficiently store and query trajectories on a NoSQL data store (i.e.,
HBase).
The advantages of our system are summarized as follows:

e JUST-Traj is a distributed and holistic system with efficient
management of massive trajectory data.

o JUST-Traj provides a complete SQL engine to conveniently
operate (i.e., store, query, analyze) massive trajectories.

e We have implemented JUST-Traj and provide an online sys-
tem for developers [5]. To the best of our knowledge, JUST-
Traj is the first full-fledged (i.e., supporting storage, query,
analytics, and SQL engine) online system for big trajectory
data management.

The remainder of this paper is organized as follows. Section 2
gives an overview of JUST-Traj. Section 3 stores trajectories into a
NoSQL database. Section 4 introduces queries provided by JUST-
Traj. Section 5 shows analytics of JUST-Traj. Section 6 describes the
SQL engine. Section 7 gives demonstrations of JUST-Traj.

2 OVERVIEW

Figure 1 gives an overview of JUST-Traj, which contains four core
components: (1) storage (Section 3), JUST-Traj stores trajectories
into a NoSQL database by three steps, i.e., pre-processing, indexing,
and storing; (2) query (Section 4), JUST-Traj provides many use-
ful spatio-temporal queries on trajectories; (3) analytics (Section
5), JUST-Traj provides many useful analysis operations for urban
applications, e.g., processing, aggregation, stay point detection, clus-
tering, and close-contacts tracking; (4) SQL engine (Section 6), we

https://doi.org/10.1145/3474717.3483990
https://doi.org/10.1145/3474717.3483990

SIGSPATIAL °21, November 2-5, 2021, Beijing, China

Huajun He et al.

|2}
GPS Logs = Processing Aggregation Stay Point Clustering || Close-contacts
BT % gr\h 100 @ @ DAL
,_“_‘D,Q‘] ‘)ﬂu <r,:: egmentation || min~ max conut
o ‘.--?,Dm»- 2| [Spatio-temporal|[Spatial Range Similarity KNN ID Temporal
Mobile Tower Data = : > — b DQL
* = = —
%% —_ |2 IDT Table XZ+ Table Z2T Tabley . (%) 2
L o E| |3 =) boLIR S
Satellitc Daa S p @) key=sharc1+xz*+tid; shard+oi§ +t_index; shard+XZ‘*T+tid. m .S
|8 8 PosCode(tr) = (0011) — A time time time al =
) G OO, I (b) PosCode 5 slo—lte Iperlodllperlodlz_“ Iperlodrl. < DML 5 <:(:.
s I 8|z XZ2_ PosGode Lty Py Voo
| (B, "B i B B e
Sharing Bike Data D |=|@xzordering (c) Xz2" va—v2 da Xz2
b g XZz2* XZT XZ2'T SQL
= g Noise Filtering Segmentation Interpolation Map Matching
TR g st et Driver | > =
Taxi Trajectory Data o : Web Portal

Figure 1: Overview of JUST-Traj.

implement a complete SQL engine with many out-of-the-box oper-
ations preset, based on which all operations (i.e., storage, query and
analytics) can be performed through a SQL-like query statement.

3 STORAGE

As shown in Figure 1(Storage), JUST-Traj pre-processes (Section
3.1) and indexes (Section 3.2) raw trajectories in Spark, then stores
(Section 3.3) massive trajectories into HBase.

3.1 Pre-processing,.

It is essential to pre-process trajectory, as the data noise and sam-
pling rate of raw GPS logs may affect the accuracy and performance
of applications. JUST-Traj supports four frequently-used operations
to process trajectories, i.e., noise filtering, segmentation, interpola-
tion, and map matching. Notably, the details of pre-processing can
refer to our previous work [13].

Noise Filtering filters abnormal GPS logs, e.g., a point drifts sig-
nificantly out of a trajectory, as the inescapable error of many GPS
terminals. If we do not remove the error points in a trajectory, ap-
plications may suffer problems in data analysis tasks.
Segmentation breaks a trajectory into several segments. One ter-
minal could generate a large number of GPS points without inter-
ruption, but only a part of the points will be used in querying and
analyzing. Thus, segmentation would reduce the computational
complexity when executing data analysis tasks.

Interpolation inserts new points into a trajectory, as GPS termi-
nals may neglect some important logs (e.g., the battery is low).
Map Matching projects a raw trajectory onto the road network.
Therefore, it is essential for many applications based on the road
network, e.g., traffic flow prediction and reachability query.

3.2 Indexing.

Indexing is vital for spatio-temporal queries, which can improve the
efficiency of extracting data from the database. JUST-Traj provides
three spatio-temporal indexes for trajectories.

(1) XZ2*, which is a fine-grained index for efficiently querying
the trajectory by a spatial range. It uses an index space of XZ-
Ordering [2] to represent the minimum bounding rectangle of a

trajectory T and a position code to describe the shape of T;
(2) XZT. A trajectory has a time range from the start point to the
end point. We index the time range of a trajectory by the temporal
range index (XZT) proposed in TrajMesa [10], which helps JUST-
Traj to query trajectories within a given time range;
(3) XZ2+T, which is a spatio-temporal index for querying trajec-
tories by a given spatio-temporal range. We first split the time
dimension into multiple disjoint time periods, then construct an
individual XZ2* index in each time period.

More details of indexes can refer to our previous work [10].

3.3 Storing,.

We store the cleaned and indexed trajectories into a NoSQL database
using the form of key-value pairs. First, we generate different kinds
of keys that contain the spatio-temporal information of a trajectory,
as shown in Figure 1(Storage)(Storing). Then, we compress the value
of a trajectory into one column, which reduces the storage size and
the I/O overhead. After that, we store the key-value pairs of a
trajectory into the indexing tables for later queries. We use the field
traj to represent the value of a trajectory and execute query and
analysis operations on this field.

4 QUERY

In this section, we introduce the fundamental trajectory queries
provided by JUST-Tra;.

ID Temporal Query. It retrieves trajectories by an object ID and
a temporal range, which could help managers to know the detailed
trajectory of a particular driver in a given temporal range, e.g.,
finding the trajectory generated by the taxi “1001” from 8:00 to
10:00 in a day.

Spatial Range Query. It finds trajectories by their relationship
with a given spatial range, e.g., finding all trajectories that traversed
Times Square.

Spatio-temporal Query. It searches trajectories by a spatio-temporal
range, e.g., finding all trajectories passing a railway station area
from 15:00 to 17:00 in a day.

Other Queries. JUST-Traj supports a variety of special queries

JUST-Traj: A Distributed and Holistic Trajectory Data Management System

[Driver

i

<—>{ Spark SQL

Apache Calcite

[Parser and Validator | [Expressions Builder |4.--

= 2 5]
[2
. — o) k64
Operator Expressions 5 = R §
| <1
: =3 3
<—| Metadata Providers |<
dery Spatio-temporal
Optimizer Indexes(CBO)

A
<—| Rules(RBO) |- Wnner

Figure 2: The Architecture of SQL Engine.

for trajectories, e.g., similarity query finds trajectories similar to a
given trajectory and kNN query finds top-k similar trajectories.

5 ANALYTICS

JUST-Traj provides many out-of-the-box data analysis functions
for trajectories, which facilitates the development of applications.
Figure 1(Analytics) shows five popular trajectory data analyses pro-
vided by JUST-Traj, i.e.,

Processing. Although we can pre-process trajectories before stor-
ing, parameters of the algorithms could be adjusted when analyzing.
That is, JUST-Traj also supports the processing in analytics stage;
Aggregation. JUST-Traj provides many aggregation operations,
e.g., max(), min(), count();

Stay Point Detection. Moving objects tend to stay due to certain
events, such as vehicles staying for refueling, couriers staying for
delivery. By analyzing the places that a moving object stays, we
can infer some places of interest, e.g., delivery addresses;
Clustering. It is one of the basic methods to explore the movement
patterns of groups;

Close-contacts tracking. It finds people who had close contact
with an abnormal person. It is vital for many applications, e.g.,
epidemic prevention [6] and companion detection.

6 SQL ENGINE

It is troublesome for users to execute operations on different plat-
forms, e.g., querying data from HBase but analyzing data in Spark.
JUST-Traj implements a complete SQL engine with many out-of-
the-box operations preset by extending Apache Calcite (Section
6.1). Based on that, all operations (i.e., storage, query, and analytics)
can be performed through a SQL-like query statement (Section 6.2).

6.1 Architecture

Figure 2 displays the architecture of our SQL engine. JUST-Traj
provides a Driver for developers to interact with the SQL engine.
The Server sends and receives data through the JDBC or RESTful
API to the Driver. We parse and validate the SQL by integrating
the SQL syntax of Section 6.2 into Antlr4. After that, we generate
the regular or spatio-temporal operator expressions. Then, JUST-
Traj improves the CBO and RBO of Calcite using spatio-temporal
indexes to optimize the queries. Finally, JUST-Traj can generate a
scanner to extract trajectories from HBase or through Spark SQL

SIGSPATIAL ’21, November 2-5, 2021, Beijing, China

to execute queries and analyses on massive trajectories. Notably,
JUST-Traj puts all spatio-temporal operations into the coprocessor
of HBase, which significantly improves the query efficiency.

6.2 SQL

Our SQL engine consists of four types of statements to operate the
database.

(1) DDL, which is the data definition language to create and drop
tables, e.g., JUST-Traj uses the following statement to create a tra-
jectory table:

CREATE TABLE <table name> (<field name> Trajectory)
WITH (<key-values >);

where <field name> is the field name of a trajectory and <key-
values> sets the configuration (e.g., enable or disable spatio-temporal
indexes, JUST-Traj acquiescently enables all indexes) of a table.

(2) DML. It loads data from multiple sources into JUST-Traj. For
example, we can load data using the following statement:

LOAD <source type>:<file path> TO JUST:<table name>
CONFIG {<the field mapping relationship >};

where <source type> could be HDFS, HIVE, KAFAK. CONFIG pro-
vides the field mapping from the source to a JUST-Traj table.

(3) DQL. It selects trajectories from tables. JUST-Traj provides spa-
tial or spatio-temporal queries for trajectories: spatial range query,
spatio-temporal range query, ID temporal query, similarity query,
kNN query. For example, the spatial range query is as follows:

SELECT « FROM <table name>
WHERE st _within(traj , st makeBBox(lngl,6latl, Ing2, lat2);

where st_makeBBox is a spatial range formed by two points (Ing1,
lat1) and (Ing2, lat2).

(4) DAL is a particular statement provided by JUST-Traj for tra-
jectory data analyses, e.g., processing, aggregation, stay point de-
tection, clustering, close-contacts detection. The SQL statement of
DAL is as follows:

SELECT <analyzing operation >(traj, {<parameters >})
FROM <table name>;

where, analyzing operation is the name of analysis, parameters set
the corresponding parameters. Section 7.2 gives two examples.

7 DEMONSTRATION

We provide an online web portal [5] for executing JUST-Traj SQL
(Section 7.1) and demonstrate JUST-Traj using trajectories from
lorries of Guangzhou, China, and taxis of Guiyang, China. Two
holistic scenarios are demonstrated in Section 7.2.

7.1 Web Portal

As shown in Figure 3, the web portal of JUST-Traj has three panels:
(1) table panel manages the created tables; (2) SQL panel provides
an SQL editor; and (3) result panel visualizes the result by multiple
display forms, i.e., table view, chart view (i.e., histogram and line
chart), and map view.

SIGSPATIAL °21, November 2-5, 2021, Beijing, China

Database New Query Finshed
+ ® C < < ©Rn | BCesr BFomat tBpot Limport K
- ® defauit
@ 1 uble a6 J_LengthtaN(tra) Lenth,
SQL Panel
Table Panel . ,
Historical operationsC
s Result Panel
amEm .
bl 1003
] Table —__ .
N | I Histogrs L -
Display Forms srogram 1004
L linechant 3 o
—ro27”

oMap —

L
Figure 3: The Web Portal of JUST-Traj [5] (http://just-traj.
urban-computing.com).

RERFF

W voe

TRIEIR =

L Y 5
R JH’(
. fkiﬂ_ihiﬁ

<
KK =M@
e @ o

-

tiim

< I -
(b) Stay Points
Figure 4: The Result of Stay Point Detection.

7.2 Scenarios
7.2.1

1 ’ CREATE TABLE traj_table (traj Trajectory);

[E R SN

L . ST Sy,

where traj is the field name that denotes a trajectory in JUST-Traj.
(2) Then, we load trajectories from HDFS into JUST-Traj:

LOAD HDFES: '/ trajectories '
oid 0,

time to timestamp(3),
point st _makePoint(1, 2)

)

to JUST:traj_table (

where ‘/trajectories’ is the path of trajectories, lines from 2 to 4 are
field mappings.

7.2.2 Stay Point Detection. In this scenario, we detect stay-points
from the results of a spatio-temporal query. A stay point is a location
where a driver stays over a given time threshold (minStayTimeln-
Second), and the spatial region of the location is not greater than a
distance threshold (maxStayDisInMeter). The underlying locations
of stay points could be the delivery addresses. More parameters
have been introduced in our handbook [5]. The SQL is as follows:

SELECT st_trajStayPoint(traj,

'{ "maxStayDistInMeter ": 10,
"minStayTimeInSecond": 60} ")
FROM
traj_table
WHERE

st_within(traj_linestring (traj),
st_makeBBox(113.0, 23.0, 113.5, 23.6))

and traj_startTime (traj) >= '2014-03-13 07:04:51"'

and traj_endTime (traj) <= '2014-03-16 08:04:51";

Lines from 7 to 10 take a spatio-temporal range to query trajectories
from the database. Lines from 1 to 3 execute the Stay Point Detection
operation on the extracted trajectories, where lines from 2 to 3 are
parameters of Stay Point Detection. As shown in Figure 4, we display
the raw trajectories and final results on a map.

Storage. (1) We first create a trajectory table, namely traj_table:

R R RSP C R

Huajun He et al.

7.2.3 Noise Filtering. In this scenario, we define the point whose
speed exceeds a maximum limited speed (maxSpeedMeterPerSecond)
as a noise point. More parameters of noise filtering can refer to our
handbook [5]. The SQL is as follows:

SELECT st_trajNoiseFilter (traj,
'{ "maxSpeedMeterPerSecond ":
FROM traj_table
WHERE
traj_oid(traj) = '1197404443")
and traj_startTime (traj) >= '2018-07-03 14:33:27"'
and traj_endTime(traj) <= '2018-08-03 14:33:27"';

20.0}")

Lines from 5 to 7 take an ID temporal query to extract trajectories
from the database. Lines from 1 to 3 execute the Noise Filtering
operation on the extracted trajectories. Figure 5 shows the results.

(a) Raw Trajectories
Figure 5: The Result of Noise Filtering.

8 ACKNOWLEDGMENTS

Supported by the National Key R&D Program of China (2019YFB2101801)

and the National Natural Science Foundation of China (61976168).

REFERENCES

[1] Louai Alarabi. 2018. Summit: a scalable system for massive trajectory data
management. In SIGSPATIAL. 612-613.

[2] Christian BOxhm, Gerald Klump, and Hans-Peter Kriegel. 1999. Xz-ordering: A
space-filling curve for objects with spatial extension. In SSTD. Springer, 75-90.

[3] Xin Ding, Lu Chen, Yunjun Gao, Christian S Jensen, and Hujun Bao. 2018. Ul-
traman: a unified platform for big trajectory data management and analytics.
Proceedings of the VLDB Endowment 11, 7 (2018), 787-799.

[4] Ziquan Fang, Lu Chen, Yunjun Gao, Lu Pan, and Christian S Jensen. 2021. Dra-
goon: a hybrid and efficient big trajectory management system for offline and
online analytics. The VLDB Journal 30, 2 (2021), 287-310.

[5] Huajun He. 2021. JUST-Traj. http://just-traj.urban-computing.com/.

[6] Huajun He, Ruiyuan Li, Rubin Wang, Jie Bao, Yu Zheng, and Tianrui Li. 2020. Ef-
ficient suspected infected crowds detection based on spatio-temporal trajectories.
arXiv preprint arXiv:2004.06653 (2020).

[7] Tianfu He, Jie Bao, Ruiyuan Li, Sijie Ruan, Yanhua Li, Chao Tian, and Yu Zheng.
2018. Detecting Vehicle Illegal Parking Events using Sharing Bikes’ Trajectories..
In SIGKDD. 340-349.

[8] Ruiyuan Li, Jie Bao, Huajun He, Sijie Ruan, Tianfu He, Liang Hong, Zhongyuan
Jiang, and Yu Zheng. 2020. Discovering Real-Time Reachable Area Using Trajec-
tory Connections. In DASFAA. Springer, 36-53.

[9] Ruiyuan Li, Huajun He, Rubin Wang, Yuchuan Huang, Junwen Liu, Sijie Ruan,

Tianfu He, Jie Bao, and Yu Zheng. 2020. Just: Jd urban spatio-temporal data

engine. In ICDE. IEEE, 1558-1569.

Ruiyuan Li, Huajun He, Rubin Wang, Sijie Ruan, Tianfu He, Jie Bao, Junbo

Zhang, Liang Hong, and Yu Zheng. 2021. TrajMesa: A Distributed NoSQL-Based

Trajectory Data Management System. TKDE (2021), 1-1. https://doi.org/10.1109/

TKDE.2021.3079880

Ruiyuan Li, Huajun He, Rubin Wang, Sijie Ruan, Yuan Sui, Jie Bao, and Yu Zheng.

2020. Trajmesa: A distributed nosql storage engine for big trajectory data. In

ICDE. IEEE, 2002-2005.

Ruiyuan Li, Sijie Ruan, Jie Bao, and Yu Zheng. 2017. A cloud-based trajectory

data management system. In SIGSPATIAL. 1-4.

Sijie Ruan, Ruiyuan Li, Jie Bao, Tianfu He, and Yu Zheng. 2018. Cloudtp: A cloud-

based flexible trajectory preprocessing framework. In ICDE. IEEE, 1601-1604.

Sijie Ruan, Zi Xiong, Cheng Long, Yiheng Chen, Jie Bao, Tianfu He, Ruiyuan Li,

Shengnan Wu, Zhongyuan Jiang, and Yu Zheng. 2020. Doing in One Go: Delivery

Time Inference Based on Couriers’ Trajectories. In SIGKDD. 2813-2821.

Zeyuan Shang, Guoliang Li, and Zhifeng Bao. 2018. Dita: Distributed in-memory

trajectory analytics. In ICDE. 725-740.

[16] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. 2011. Driving with knowl-

edge from the physical world. In SIGKDD. 316-324.

[10

[11

[12

[13

[14

[15

http://just-traj.urban-computing.com
http://just-traj.urban-computing.com
http://just-traj.urban-computing.com/
https://doi.org/10.1109/TKDE.2021.3079880
https://doi.org/10.1109/TKDE.2021.3079880

	Abstract
	1 INTRODUCTION
	2 Overview
	3 STORAGE
	3.1 Pre-processing.
	3.2 Indexing.
	3.3 Storing.

	4 QUERY
	5 ANALYTICS
	6 SQL ENGINE
	6.1 Architecture
	6.2 SQL

	7 DEMONSTRATION
	7.1 Web Portal
	7.2 Scenarios

	8 Acknowledgments
	References

