
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

cuRL: A Generic Framework for Bi-Criteria
Optimum Path-Finding Based on Deep
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Abstract—Traditional path-finding studies basically focus on
planning the path with the shortest travel distance or the least
travel time over city road networks. In recent years, with the
increasing needs of diverse routing services in smart cities, the
bi-criteria optimum path-finding problem (i.e., minimizing path
distance and optimizing extra cost or utility according to users’
preference) has drawn wide attention. For instance, in addition
to distance, the previous studies further find routes with more
scenery (utility) or less crime risk (cost). However, existing works
are scenario-oriented which optimize specific cost or utility,
ignoring that the routing planner should be universal to deal with
both cost and utility in different real-life scenarios. To fill this gap,
this paper proposes a generic bi-criteria optimum path-finding
framework (cuRL) based on deep reinforcement learning (DRL).
Specifically, we design a novel state representation and reward
function for the DRL model of cuRL to overcome the challenges
that 1) the cost and utility should be optimized with minimal
path distance in a unified manner; 2) the diverse distributions
of cost and utility in various scenarios should be well-addressed.
Then, a transition preprocessing method is proposed to enable the
efficient training of DRL and avoid detours. Finally, simulations
are performed to verify the effectiveness of cuRL, where two
criteria (i.e., solar radiation and crime risk) are modelled based
on the real-world data in downtown New York. Comparing with
a set of baseline algorithms, the evaluation results demonstrate
the priority of the proposed framework for its generality.

Index Terms—intelligent transportation systems (ITS), route
planning, cost and utility, deep reinforcement learning.
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I. INTRODUCTION

PATH-FINDING over spatial road networks is one of the
most fundamental yet important planning activities in

smart cities [1, 2, 3]. Usually, millions of people rely on mobile
GPS navigators and online trip platforms such as Google
Maps to find paths to desired destinations, where the core
path-finding algorithms mainly focus on minimizing the travel
distance or travel time (e.g. [4, 5]). With the increasing needs
of diverse routing services and the easy availability of multi-
sourced data [6, 7, 8, 9], alternative routing strategies have
attracted wide attention during recent years where specific two
criteria are considered, including scenery and driving distance
[10, 11], crime risk and driving distance [12, 13, 14], quietness
and walking distance [15], and so on [16, 17]. This kind of
bi-criteria optimum routing strategies plays a significant role
in smart mobility and urban routing services. Depending on
the application case, the alternative criteria (in addition to the
common-used travel distance or travel time) can be regarded
as either cost or utility. For instance, the crime risk in “safe”
routes and the noise level in “quiet” routes are regarded as
cost to be minimized while the scenery score in “beautiful”
routes is regarded as utility to be maximized.

However, most of the existing routing literature is graph-
search based and scenario-specific, which focuses on either
minimizing cost or maximizing utility and lacks the capacity
to optimize both of them. For instance, the traditional shortest
distance algorithms (i.e., Dijkstra [4]) cannot be applied to the
one searching for largest-utility paths [18, 19]. As a matter
of fact, there are quite a few alternative criteria that can serve
as both cost and utility in different scenarios according to
users’ preference. Taking the criterion of solar radiation as an
example, the path with less ultraviolet radiation is normally
preferred by pedestrians [20] while more solar radiation is
needed when planning the path for solar-powered vehicles
[21]. For the criterion of crime risk, citizens desire to find
a safe path with minimal risk [12] while policemen on patrol
prefer an unsafe path [10]. For this kind of criteria, applying
two different optimization methods will introduce significant
deployment cost and complexity. Therefore, a generic bi-
criteria optimum routing framework needs to be explored to
fit various criteria, especially the ones could be cost and utility
in different scenarios.

Motivated by the flexible reward mechanism and power-
ful learning ability of deep reinforcement learning (DRL),
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the DRL-based routing becomes a promising solution. Re-
cently, DRL has been widely-utilized in numerous sequential
decision-making research fields like robot control, automatic
transmission, and etc. [22, 23, 24, 25]. Coincidentally, the
path-finding is naturally a sequential decision-making process,
where the current routing decision has a great impact on the
future moves towards the destination. Therefore, the recent
development of DRL has shown the possibility and capability
of path planning [12, 26, 27], where the agents learn routing
policies from the deep neural networks (DNN) via trial-and-
error experiences. Better yet, DRL-based methods can work in
a multi-objective way, where the reward should be elaborately
designed to integrate multiple objectives for both cost and
utility optimization scenarios. However, with the reward that
simply combines multiple objectives (i.e., distance as well as
alternative criteria), the DRL model may not converge unless
the action space is fully-explored. As a result, the agent cannot
reach its destination with a cyclic path. Therefore, the existing
DRL-based routing methods (e.g., [12, 27]) propose their
scenario-specific skills to ensure the complete path generation,
that are hard to be transferred to other criteria.

This work aims to go beyond the previous DRL-based
path-finding algorithms and has the goal of finding a generic
bi-criteria routing framework for optimizing path distance
and various alternative criteria. To this end, the following
challenges should be addressed. Firstly, the cost or utility for
alternative criteria as well as distance should be optimized in
a unified manner. Secondly, unlike distance, some alternative
criteria may lack spatial proximity over adjacent road segments
and even are distributed sparsely in the city. For example, the
crime risk level of road segments is influenced by a variety of
factors like road conditions, public facilities, etc. [28, 29, 30].
Some roads are extremely safe without any crime reports,
which makes the distribution of crime risk sparse in the whole
city eventually. This heterogeneity makes various criteria hard
to be represented and learned in the generic DRL framework.
Thirdly, the routing strategy may cause detours when optimiz-
ing the cost or utility, which contradicts the principle objective
of distance. Therefore, a balance between the distance and the
target criterion should be struck.

To address the above challenges, we propose cuRL, a
generic bi-criteria optimum path-finding framework for both
cost and utility optimization based on deep Reinforcement
Learning to enable diverse urban routing services. The goal
of cuRL is to find a low-cost/high-utility path with minimal
path distance from an origin to a destination. Generally, our
contributions are summarized as follows:
• Unlike the previous alternative routing methods, cuRL

introduces a novel and generic type of path generation via
DRL, where a joint reward function of DRL is proposed
to indicate cost and utility in a unified manner.

• Moreover, the reward function is elaborately designed to
not only track the accumulative utility or cost on the path
but also guide the learning agents towards destinations
with minimal path distance. To this end, a novel concept
of effective distance is introduced to ensure the arrival
to destinations, and thus a trade-off mechanism between
bi-criteria can be found.

• To ensure the generality, a novel state representation
which not only preserves the spatial status but also
provides the key information on alternative criterion is
designed. This integrated state can promote the efficient
training of routing policy in DRL.

• We conduct extensive experiments based on the real-
world solar radiation and crime risk data in Downtown
New York. Results show that cuRL outperforms baseline
algorithms, especially for its scenario generality.

The remainder of this paper is organized as follows. Sec-
tion II firstly introduces the related work. Then, Section III
formally formulates the bi-criteria optimum routing problem.
After that, the detail of cuRL is provided in Section IV
and Section V presents our experimental results. Finally,
Section VI concludes this paper and discusses the future work.

II. RELATED WORK

In this section, we discuss the related literature from the
perspectives of routing for alternative criteria and routing with
reinforcement learning, respectively.

A. Routing for Alternative Criteria

There are plenty of studies on route planning that optimize
various alternative criteria [11, 13, 14, 15, 16, 31, 32, 33].
Generally, the efforts can be categorized into cost-minimizing
and utility-maximizing. The metric of cost or utility in the real
world embodies the beauty score, safety/risky score, happiness
score, etc., which fortunately can be obtained based on multi-
source data (e.g., street view images and human behaviors
data) with the development of smart sensing, image process-
ing, and GPS technology. To optimize the specific alternative
criterion, these works devote to the cost/utility modelling for
the path-finding procedure.

Specifically, Zheng et al. [11] model the utility of beauty
based on the geospatial distribution of geotagged images, and
then optimize both distance and beauty score under the frame-
work of the Bellman-Ford algorithm [31]. Furthermore, MA-
SSR [32] extracts more relevant information from geo-tagged
images and check-ins to further quantify the utility of beauty
accurately. Taking into account the actual views on specific
route segments, the work [33] obtains scenic scores based
on Google Street View (GSV) images and plans personalized
routes according to the user’s preference. Moreover, Sharker
et al. [16] model the criterion of road health as utility by
considering the environmental and individual factors on the
routes. Concerning the works on cost optimization, SocRoutes
[13] models the riskiness of roads by analyzing extremely
negative sentiments inferred from Twitter data. It generates
routes away from unsafe regions with a constraint detour
distance. Based on the civic datasets of criminal activity and
city-dwellers mobility traces, the routing strategy proposed in
[14] outputs a set of paths that provide the trade-off between
distance and safety for users to choose. Additionally, Quercia
et al. [15] quantify the happiness score based on a crowd-
sourcing platform, where two street scenes are shown for users
to vote which one looks more beautiful, quiet, and happy.
Based on it, a top-k list of the shortest paths is found, which
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are simply re-ranked according to their total utility scores to
find the optimum route.

B. Routing with Reinforcement Learning

In recent years, reinforcement learning (RL) based routing
has also been widely-explored. For instance, the authors in
[34, 35] deal with the vehicle routing problem (VRP) based on
DRL. More specifically, Delarue et al. [34] adopt a value-based
DRL where the action selection process is formulated as a
mixed-integer optimization problem while Duan et al. [35] use
the policy-based DRL, where routing policies are established
based on graph convolution networks (GCN). Mirowski et al.
[26] propose a navigation system based on DRL, where the
DNN-based routing policy is trained with GSV images. The
policy takes the input of the current location’s GSV image as
well as the destination represented by nearby landmarks, and
outputs the navigation action accordingly. However, it only
takes the path distance into consideration and the map size is
limited due to the high-dimension of image input. Moreover,
Sarker et al. [27] present a multi-criteria route recommendation
system that concerns fuel consumption, travel time, and air
quality. It firstly predicts these three criteria and weights
them with given hyper-parameters. Then, a Q-learning based
approach is utilized to learn the routing strategy. However, the
state space of this traditional look-up Q-table approach is very
large, which is inefficient to maintain. SafeRoute, proposed in
[12], introduces a DRL approach to find safe paths in the urban
environment. SafeRoute trains a DNN-based policy network
which takes the embedding of both the current and destination
nodes as the input. In the inference stage, it generates several
optional paths and selects the one with the least crime risk.

In summary, most current literature on alternative routing
criteria and RL-based routing is criterion-specific, which opti-
mizes either cost or utility. Different from the existing works,
this paper proposes a generic DRL-based routing frame-
work, which can apply to both cost-minimizing and utility-
maximizing problems, where the reward and state components
of DRL are carefully designed so that the diversity of multiple
criteria can be addressed.

III. PROBLEM FORMULATION

In this section, some key concepts are formally defined, fol-
lowed by the problem formulation of the bi-criteria optimum
path-finding.

A. Definitions

Definition 1 (Road Network). A road network is a graph G =
(N,E) consisting of nodes and edges, where N denotes the set
of nodes including intersections and dead-ends; E ⊆ N ×N
denotes the set of directed edges.

Definition 2 (Edge Attribute). An edge in the road network
(i.e., graph) can carry certain attribute depending on real ap-
plications. For instance, the most common edge attribute is the
travel distance or the travel time. For the alternative routing
criteria, an edge can carry many more kinds of attributes,

including beautifulness, quietness, happiness, riskiness, and so
on, enabling a much wider spectrum of urban routing services.

Definition 3 (Cost and Utility, cu). For the edge attribute, it
can be either cost or utility according to the real application
scenario. For the edge cost, it is harmful and one may expect to
avoid; while for the edge utility, it is enjoyable and helpful and
one may expect to gain. To ease the presentation, we simply
use cu to represent the edge attribute uniformly no matter the
edge attribute serves as cost or utility. In addition, we have
to emphasize that cu in this paper does not indicate travel
distance or travel time of an edge.

Definition 4 (Path). A path τ is a sequence of connected edges
in the road network from an origin node n0 to a destination
node nk, denoted as τ = 〈e0,1,e1,2, · · · ,ek−1,k〉, where ei,i+1
indicates the edge from ni to ni+1.

Definition 5 (Path Distance and Path cu). The path distance
d(τ) of a path τ = 〈e0,1,e1,2, · · · ,ek−1,k〉 is defined as the total
edge distance of all its included edges. Similarly, the path cu of
τ is defined according to the equation: cu(τ) =∑

k
i=1 cu(ei−1,i),

where cu(ei−1,i) denotes the cost or the utility on the edge
ei−1,i. It should be noted that, unlike the common edge
attribute such as the travel distance that every edge carries, cu
can be zero in some edges, depending on the physical meaning
of the specific attribute.

Definition 6 (Bi-criteria Optimum Path). For a given OD
(Origin-Destination) pair, the bi-criteria optimum path is
defined as the one with the minimal path distance, and the
minimal path cost c (or the maximal path utility u).

Definition 7 (Routing Action). The routing action a in this
paper is defined as the direction of the next road segment
chosen by the pedestrian/driver at every intersection on the
map. All of the directions are divided into eight classes (i.e.,
North, Northwest, West, Southwest, South, Southeast, East and
Northeast, each covering 45 degrees in coordinate system),
each of which corresponds to a type of routing action.

B. Problem Statement
In this section, we propose our Bi-Criteria Optimum Path-

finding (BiCpath) problem over the road network, which is a
typical routing problem as:

Given:
1) A road network G(N,E) of the city with enriched

attribute weights of criteria;
2) A user query with the origin and destination node pair

(No,Nd) as well as the targeted criterion (i.e., the cost
or utility) according the user’s preference.

Output: A path τ from No to Nd in the road network
adhering to the following objectives:

1) Principle objective: minimizing the path distance d(τ);
2) Sub-objective: maximizing/minimizing the path cu cu(τ)

based on the targeted criterion.
Formally, the overall objective is maximizing the linear

combination of the above two objectives, r̄, as follows:

r̄ =−d(τ)+α ∗ cu(τ) (1)
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where α is a hyper-parameter to weight the cu sub-objective.
In addition, the sign of α indicates whether cu serves as cost
or utility, i.e., α is set to positive for utility and negative for
cost. Note that the trade-off between the principle objective
and sub-objective can be achieved by adjusting α . Therefore,
we propose an automatic determination method for α for both
objective trade-off and framework generality, which is detailed
in Section IV-C.

C. RL Formulation for BiCpath Problem

As a matter of fact, the path-finding problem is naturally
a sequential decision problem, which can be solved by the
RL framework [12]. Thus, the goal of BiCpath problem is
transferred to finding a decision-making policy π using RL,
which maximizes r̄ defined as Eq. 1.

The RL is formulated as a sequential Markov Decision
Progress (MDP), represented by the five-tuple < S,A,P,R,γ >.
s ∈ S denotes the state of agent in the environment. A is the
action space which contains all the actions that can be taken
by the agent. In our problem, A is an 8-element tuple and the
routing action a ∈ A is described in Definition 7. p ∈ P is the
transition probability for the agent to transit to the next state
st+1 after taking action at given the state st . rt ∈ R indicates
the immediate reward after the agent takes an action according
to the policy π . Once an action is completed, the experience
corresponding to that action called the transition denoted as
Tr = (st ,at ,rt ,st+1) is generated to record for learning.

In the RL-based BiCpath problem, we aim to optimize the
cumulative reward G, also known as return, which accumulates
the immediate reward achieved by each sequential routing
action in the path. This return guarantees the long-term path
optimization as formally shown in Eq. 2.

Gt = rt + γrt+1 + γ
2rt+2 + · · ·+ γ

T−trT =
T

∑
k=t

γ
k−trk (2)

where t and T refer to the current step and the terminal step,
respectively; γ ∈ [0,1] is the discount rate, which is used to
evaluate the importance of reward generated by future steps.

Instead of optimizing the path as shown in Eq. 1, the RL-
based routing agent aims to find an optimal policy π∗ that
achieves the maximal long-term reward Gt . To this end, the
state-action function value Qπ(s,a), also named Q-value, is
used to capture the quality of policy which takes the action of
a under the state of s, denoted as,

Qπ(s,a) = Eπ [Gt |st = s,at = a]

= Eπ

[
T

∑
k=t

γ
k−trk

∣∣∣∣st = s,at = a

]
(3)

where Eπ [·] calculates the expected value with respective to
the stochastic policy π . The problem of finding optimal policy
π∗ is actually the problem of finding optimal Q-values Q∗(s,a)
because the agent will intuitively choose the optimal routing
action a∗ with the maximum Q-value as shown in Eq. 4. Based
on the Bellman equation, the target optimal Q-value can be
computed according to Eq. 5.

a∗ = argmax
a′

Q(s,a′) (4)

Q∗(s,a) = E
[

rt + γ max
a′

Q∗(st+1,a′)|st = s,at = a)
]

(5)

Based on this Q-value, multiple objectives (i.e., path dis-
tance and path cu) are combined and optimized in a unified
manner. However, with this integrated Q-value, the policy may
fail to converge with under-exploration, which is common in
most practical scenes. As a result, the agent may cause many
unnecessary detours and even cannot reach its destination.
Moreover, the criteria heterogeneity should also be addressed
in terms of generality. Therefore, we present the cuRL scheme
concerning solving these challenges in the next.

IV. METHODOLOGY

In this section, we first provide the cuRL framework
overview, then introduce the details on each component of
cuRL and how cuRL fulfills the model training and inference.

A. Framework Overview

Due to the capability of handling high-dimensional in-
put [22, 36], DRL is utilized in cuRL to deal with the complex
routing environment. In this way, the DNN-based Q-value
instead of tabular Q-value can be learned via trial-and-error
experiences. The overall framework of cuRL is illustrated in
Fig. 1. When training the DRL, we utilize a double deep Q-
network (DDQN [36]) to decouple the selection and evaluation
of routing actions through two networks (i.e., the Q-network
and the target network). The central-agent with DDQN learns
the optimal policy to maximize the accumulative reward when
interacting with the environment of road network (i.e., Graph
Environment). There are three main components (i.e., State
Representation, Reward Computation and Transition Prepro-
cessing) that are carefully designed for interactions between
the agent and the environment, detailed as follows.
• State Representation. The state in MDP is determined in

this component to track the spatial status of the agent
on the road network. Moreover, it provides essential
information on cu to deal with criteria heterogeneity.

• Reward Computation. This component computes the im-
mediate reward through the reward function. It is de-
signed to include two parts, i.e., the reward for guiding
the agent towards the destination and the reward for
optimizing the cu sub-objective.

• Transition Preprocessing.We design a transition prepro-
cessing component for transitions generated by agents
before being fed into the DDQN in the training stage.
The transition preprocessing component works with two
functions, namely arrival detection and reward modifica-
tion. The two functions are both designed to make the
training more efficient.

B. Components of cuRL
1) State Representation: The state s represents the current

status of an agent in the road network. Foremost, it should
contain the location information about the current node Nc
and the destination node Nd , telling the agent where it is and
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Graph Environment State Representation Agent with 

DDQN

Mini Batch

Replay Memory

Q-Network𝑸𝝅(𝒔, 𝒂)

𝒓𝒕 𝒔𝒕, 𝒔𝒕+𝟏

Tr

𝑵𝒄

𝑵𝒅
Transition Preprocessing

Arrival Detection

Reward Modification

Target-Network

Destination Node

Current Node

𝒂𝒕

Reward Computation

Reward for Distance

cu State

Coordinates State

Distance State

𝒔𝒕+𝟏

Terminal RewardReward for cu

Fig. 1. The framework of cuRL. The arrow lines refer to the data flows in the training and inference stages (The black solid lines are used for both the
training and inference stages while the red dash lines only the training stage).

where to head. Intuitively, there are two ways to represent the
location of a node in the state in RL framework, i.e., one-hot
encoding and latitude-longitude coordinates [37].

One-hot encoding: When the node is represented by the
simple one-hot encoding [37], it is advantageous that every
two nodes can be far enough in the representation space
for better distinguishment by the DNN. However, it suffers
from the following two major drawbacks. First, the dimension
of one-hot encoding increases with the scale of the road
network, making the DNN more complex with dimension
disaster. Second, all geographical features in the road network
are completely lost. As a result, the learning agent cannot
make use of the experience of already learned samples when
training new samples, which significantly slows down the
policy convergence since the DDQN works in a sample-
inefficient memorizing way, rather than a learning way.

Latitude-longitude coordinates: Duo to the above-
mentioned drawbacks, we intend to abandon one-hot encoding
and utilize the information of latitude-longitude coordinates.
When using latitude-longitude coordinates to represent the
state for a node, its nearby nodes in the road network
will also have close representations, potentially resulting in
choosing the same best actions for itself and its geographical
neighbours. Such a result is suitable for distance-orientated
path-finding problems, nevertheless, may not fit to the bi-
criteria optimum path-finding problem. Taking the case of
minimizing the solar radiation as the example (as shown in
Fig. 2), agent1 and agent2 have two close origin nodes (i.e.,
N1 and N2) and the same destination node (i.e., Nd). τ∗1 and τ∗2
represent the bi-criteria optimum paths for these two OD pairs,
respectively. Even though N1 and N2 are extremely close in
the road network, it is obviously that agent1 and agent2 have
totally different optimal action sequences because the solar
radiation distributions on edges linked to them are completely
different. In this case, if we simply use latitude-longitude

Intensity of solar radiation

Max0

𝑵𝒅

𝑵𝟏

𝑵𝟐

𝝉𝟏
∗

𝝉𝟐
∗

Fig. 2. An example of two optimal routes for bi-criteria optimum path-finding
with the cu of solar radiation. With the same destination, two close original
nodes lead to different optimal action sequences due to the discontinuous
distribution of cu.

coordinates in the state representation, the differences of solar
radiation distributions cannot be well-distinguished, as a result,
agent1 and agent2 may take the same actions due to the
closeness of the state representation. Therefore, the node state
representation should be carefully designed to address the
issue of cu distinguishment.

Based on the above analysis, we propose a novel state
representation that not only provides enough graphical feature
information for the agent to learn, but also makes enough dis-
crimination among adjacent nodes. Specifically, the designed
node state consists of the following three parts:
• Coordinates State. Latitude-longitude coordinates of the

current node are still preserved because such data provide
the most intuitive spatial information.

• Distance State. We also integrate a priori knowledge of
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the shortest distance in our representation. The distance
state is defined as the shortest distances from all of the
current node’s neighboring nodes to the destination node
in the road network. Distance state also helps the agent
to move to the destination with the minimal distance
potentially.

• cu State. It is used to represent the state for the sub-
objective, helping the agent to learn the spatial feature of
the cu. We use the weights of cu of all edges linked to
the current node to represent it.

Overall, the state s is defined by a two-tuple (Xc,Xd), where
the two elements Xc,Xd track the representation of current
node Nc and destination node Nd , respectively. Note that Xc
contains all the three types of states listed above while Xd
omits the distance state.

Based on the current state s, the central agent chooses a
routing action from action space A. If there is no linked road
in the direction of the chosen action, the graph environment
will select an action again until there exists a road. After the
agent takes an action from a node to the next node in the
road network, an immediate reward r will be returned for
this action, which should be carefully designed in the next
to ensure the efficient learning of cuRL.

2) Reward Computation: Recall that the objective of cuRL
is towfold, namely path distance minimization and cu opti-
mization, formulated as Eq. 1. Therefore, we design a reward
function that consists of two parts, rdis denoting the principle
objective and rcu denoting the sub-objective.

Intuitively, to optimize the two objectives, using edge dis-
tance and edge cu to represent rdis and rcu respectively may be
a feasible solution. Unfortunately, simple combination of edge
attributes does not have the ability to guide the agent to the
destination. To solve this issue, we propose a new concept
of effective distance to indicate the principle objective rdis
instead of using the original edge distance. Effective distance
is designed according to a heuristic rule which helps the agent
to generate paths with the approximate shortest distance. The
definition of effective distance is shown as follows.

Definition 8 (Effective distance). Effective distance (dise f f )
measures how far the agent can move towards the destination
by an action, which is defined as the difference between the
distance along the origin-destination (

−−−→
NoNd) direction and the

normal direction −→n of
−−−→
NoNd (i.e., −→n ⊥−−−→NoNd). The detailed

calculation of dise f f is described in Fig. 3.

Effective distance considers both path distance and action
direction. An action that introduces a bigger road segment
distance and a smaller angle to the OD direction will have a
bigger effective distance, which could make the agent move
closer to the destination more effectively. With such heuristic
design, the agent is expect to learn to generate a path to the
destination with a minimal path distance.

The effective distance based reward for the principle objec-
tive (rdis) is computed according to Eq. 6.

rdis = norm−1,1
(
dise f f

)
(6)

where the function norma,b(c) normalizes c and makes it
fall into [a,b]. The normalization is based on the equation

x
y

𝑵𝒐

𝑨𝟏

𝑵𝒃

𝑵𝒂

𝑵𝒄

𝑵𝒅

𝒂

Fig. 3. An example of calculating effective distance. Suppose an agent
traveling from origin No to destination Nd takes the action a in

−−−→
NoNa direction

at node No on the graph. Take node Nd as the coordinate origin, the
−−−→
NoNd

direction as the x-axis, and the normal direction −→n as the y-axis to establish a
coordinate system. Then draw vertical lines of x-axis from node Na at point A1.
For the action a, dise f f = (|NoNd |− |A1Nd |)−|A1Na|, where |NoNd |−|A1Nd |
represents the distance of the agent moving towards

−−−→
NoNd direction and |A1Na|

evaluates the distance that deviates from
−−−→
NoNd direction.

cnorm−a
b−a = c−cmin

cmax−cmin
where cnorm is the output of the function

norma,b(c). cmin and cmin are the maximum and minimum one
of c, respectively. a and b are set to -1 and 1, since the effective
distance can be positive or negative.

Reward for the sub-objective (rcu) is simply computed based
on the original edge cu, shown in Eq. 7.

rcu = norm0,1 (cua) (7)

where cua is the cu weight on the edge determined by the
agent’s action. rcu is always non-negative so it is normalized
to the range from 0 to 1.

To combine rdis and rcu, we also use the hyper-parameter
α to trade-off (i.e., rdis +α ∗ rcu), just in line with the hyper-
parameter in the overall objective Eq. 1. When α is set to 0,
cu is not taken into consideration and the BiCpath problem is
degraded to the shortest-distance routing problem.

Besides, to make the DRL model converge faster, an ad-
ditional terminal reward rT with a much bigger value than
rdis and rcu is introduced, if the agent arrives at the destina-
tion node. Consequently, the final immediate reward can be
calculated according to Eq. 8.

r = rdis +α ∗ rcu + I∗ rT (8)

where I indicates whether the agent arrives at the destination
node (set to 1) or not (set to 0).

3) Transition Preprocessing: There is a phenomenon that in
a number of cases, the agent cannot arrived at the destination,
just wandering in the road network or cycling in a loop in the
model inference stage. To alleviate such issue, we design a
transition preprocessing component in cuRL, which consists
of arrival detection and reward modification.

We firstly analyzes the reason of this phenomenon. Since
DDQN is a value-based RL method, the samples of one-
step transitions are used, where the set of transitions {Tr =
(st ,at ,rt ,st+1)} will be stored in the replay memory by the
agent. These transitions are collected in the real path-finding
trials for Q-network training, based on which the agent uses
the ε-greedy method to select the routing action. ε-greedy
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method chooses the optimal action with the highest neural net-
work output and explores the other actions with a probability
of ε (more details can be found in Section IV-C). This can
guarantee the action exploration to find a more satisfactory
path. However, there are some under-explored routes if the
scale of the road network is large. This may lead to unstable
routing policy and loop paths that cannot arrive at destinations.
As a result, the one-step transitions in this kind of routes may
further confuse the Q-network training.

Therefore, we proposes the arrival detection function, which
filters the set of transitions {Tr = (st ,at ,rt ,st+1)} using a
buffer before they are fed into the replay memory of DDQN.
Only transitions of paths that can arrive at their destinations
successfully will be removed from the buffer to the replay
memory to train the model. Then, the reward modification
function is introduced, which is responsible for loop path
detection. If all actions within the loop path are not generated
with the exploration way in the ε-greedy method, their cor-
responding rewards will be modified using a negative figure.
The negative reward gives a penalty to the action in a loop
to avoid the agent being trapped in the loop in the later
periods. Afterwards, the new transitions are stored in the replay
memory. Due to the small learning rate, DDQN parameters
will be updated in a smooth way without violent fluctuations
even when the rewards of new transitions are negative.

C. cuRL Training and Inference

Figure 1 illustrates the framework of cuRL with the data
flows in both training and inference stages. To make the
training process clear, we further provide the corresponding
pseudo-code in Alg. 1. We also recommend readers to refer to
the framework figure and pseudo-code throughout this section.

In RL, the training period consists of multiple episodes
and each episode corresponds to an algorithm instance. In our
algorithm, an episode refers to the process of an agent from a
random origin to a random destination within the preset max-
imum step T . If the agent cannot reach the destination after
the given maximum step, it will also terminate at this step and
the next episode will start. At each step in an episode, feeding
with the state vector s = (Xc,Xd), the agent takes an action
with ε-greedy strategy (Lines 6∼10 in Alg. 1) to balance the
exploration and the exploitation. For the exploration, the agent
will choose a random action in the action space; while for the
exploitation the agent will take the action having the highest Q-
value generated by DDQN network. The exploitation utilizes
experience that the agent learnt from the history data while the
exploration chooses the action randomly to avoid falling into
the local optima and generate the potentially better routing
policy. In the first episode, there is just no experience to
exploit, thus ε is set to 1. As the experience accumulates in
the training stage, ε gradually becomes smaller as iteration
continues (Line 11 in Alg. 1). δ (δ < 1) is a hyper-parameter
adjusting the decay speed of ε . In the last episodes, ε tends
to 0 and only the exploitation is utilized.

For convenience, we use t to represent the sequence ID of
the current step in an episode in the rest presentation. After an
agent takes an action at , it gets an immediate reward rt from

Algorithm 1: Training of cuRL based on DDQN
1 Initialize replay memory M, buffer B in the transi-

tion preprocessing component, Q-network and target-
network parameters θ and θ ′.

2 for episode = 1 : N do
3 Initialize the current node Nc =No (the origin node),

the destination node Nd , the current state st .
4 Set Flagtrain = 0.
5 for t = 1 : T do
6 if The random number is less than ε then
7 Select the action at randomly.
8 else
9 Select the action at = argmaxa Q(st ,a;θ).

10 end
11 Update ε = ε ∗δ .
12 Take action at in the environment, get the next

node Nn, the next state st+1 and the reward rt .
13 Store transition Tr = (st ,at ,rt ,st+1) to buffer B.
14 Update Nc = Nn, st = st+1.
15 if The agent arrived at the destination node then
16 Move all transitions from B to M.
17 Set Flagtrain = 1.
18 end
19 if The actions of transitions without exploration

in B make up a loop then
20 Modify the rewards of transitions in loop.
21 Move the new transitions from B to M.
22 Set Flagtrain = 1.
23 end
24 if Flagtrain == 1 then
25 Sample a minibatch Mbatch from M.
26 Calculate the loss for Mbatch with Eq. 10.
27 Update θ with Adam [38] optimizer.
28 Synchronize θ ′ = θ every ∆ steps.
29 break
30 end
31 if t == T then
32 Empty the buffer B.
33 end
34 end
35 end

the environment and the state of environment transits from st to
st+1. The transition denoted by Tr will be temporally stored
in the buffer B of transition preprocessing component, then
the arrival detection and reward modification functions begin
to work. The transitions in the buffer B will be moved to the
replay memory M in DDQN or not, according to the judgment
of transition preprocessing component. M is an empty queue
with limited length (|M|) and will be gradually filled with
transitions. Once the number of stored transitions reaches
|M|, the most earliest stored transitions will be popped out
and replaced by the new transitions. The training frequency
can be adjustable and here we set it to be the same to the
agent’s episodes, i.e., we train the agent once for each OD pair.
The target-network and Q-network in DDQN have the same
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structure with weight parameters θ ′ and θ , respectively. Target
Q-value Qtarget (Eq. 9) is used to estimate the optimal Q-value
defined in Eq. 5. In each training, the Q-network parameters
θ and the target-network parameters θ ′ will be updated, as
shown in Lines 24∼30 in Alg. 1.

Qtarget = rt + γQ(st+1,argmax
a

Q(st+1,a;θt);θ
′
t ) (9)

L(θ) =
1

|Mbatch| ∑
Tr∈Mbatch

[Qtarget −Q(st ,at ;θ)]2 (10)

It is necessary to note that a pre-training stage is essential
since it enables the model with the basic capability to reach the
destination. In the pre-training stage, the parameter α in the
reward function is set to 0, indicating that only the principle
objective is optimized. Moreover, the arrival detection is
also disabled in the transition preprocessing component to
explore the possible paths to the destination. Other settings
are exactly the same to the training shown in Alg. 1. After
the pre-training stage, α grows gradually to optimize the sub-
objective. We set a fixed step size (e.g., 0.01) for the growth
of α . For every model with different αs, their performances
for optimizing cu (the definition of performance metrics is
detailed in Section V) are tested separately. The growth rate
of model performance will gradually decrease with α increases
(e.g., model performance in Fig. 6). If the growth rate reaches
a preset threshold (e.g., 5%), we will stop the training and the
α at that time is chosen as the result parameter.

As mentioned before, the inference process is shown using
black solid arrows in Fig. 1. The agent just takes the action
with the highest Q-value step by step until it reaches the desti-
nation node. Although the transition preprocessing component
certainly works effectively in the training stage, there are still
a tiny fraction of OD pairs with which the agent would fall
into a loop path. Under such circumstance, an extra operation
that activates the ε-greedy method again for those OD pairs,
is taken to help the agent to get rid of loops.

V. EVALUATION

In this section, we empirically evaluate the performance
of the proposed cuRL. We introduce the experimental setup,
baseline algorithms used for comparison, evaluation metrics,
and performance results.

A. Experimental Setup

1) Data Description: We conducted experiments using two
representative cus (i.e., the solar radiation and the crime risk)
in the road network of the Downtown Lower Manhattan, New
York, US. The road network with 998 nodes and 3326 edges
is crawled via the OpenStreetMap [39] which is a well-known
crowdsourced platform. The values of cu are obtained based
on other crowdsourced data, detailed as follows:
• Solar radiation. The concept of solar radiation here

refers to the Global Horizontal Irradiance [40] and the
intensity of solar radiation is calculated using the method
proposed in [41] which takes into account the blocking

by human facilities on both sides of the street. In different
roads of a city at the same time, the solar radiation
differs from each other because human facilities like
trees and buildings along road sides would block the
solar radiation to varying degrees. Moreover, the height,
density and arrangement direction of human facilities are
also different. Thus, the solar radiation differs from road
to road and lacks the spatial proximity. The weights of cu
in our experiment are assigned using the average intensity
of solar radiation within an hour from 11:00 to 12:00.
The spatial distribution of such average solar radiation
over the road network is shown in Fig. 4(a). As can be
seen, for the solar radiation attribute, each edge in the
road network carries a certain value of weight.

• Crime risk. The crime risk is obtained through the
statistics of historical crime data near an edge, reflecting
how unsafe the road it is. We refer to the measurement
method used in [12] to weight the crime risk of an edge,
as detailed in Eq. 11.

risk =
∑

n
j=1 distance(c j,xm)

l
(11)

where n is the number of historical crime reports within
the radius of half length of the edge; c j is the j-th crime
report and xm is the midpoint of the edge; distance(c j,xm)
calculates the Euclidean distance between c j and xm; l
represents the edge length. Crime data is collected from
NYC Open Data [42], which include the time, coordinate
and type of crimes, etc. The crimes with types of assault,
robbery and dangerous weapons are used because we are
more concerned about the street-level safety. There are no
crimes on some edges occurred in history and the crime
risk is set to 0 for such edges. Thus, weights of the crime
risk are sparsely distributed over the road network, as
shown in Fig. 4(b). As can be observed, compared to the
solar radiation attribute, only a small fraction of edges
carry a varying degree of the crime risk.

2) Baseline Algorithms and Evaluation Metrics: Both dis-
tance and cu are considered in the routing objective, thus they
are naturally used as the evaluation metrics. An algorithm
outperforms if it generates paths with shorter distance, bigger
cu when maximizing cu and smaller cu when minimizing cu.
As the comparison, a set of state-of-art algorithms are also
adopted, listed as follows.

• Shortest. It only considers the distance when routing,
generating paths with the shortest distance using the
classical Dijkstra algorithm. It is the upper bound of
optimizing the distance.

• Least cu. It only considers the cu minimization which is
only for the scenarios that the cu serves as cost. It is the
upper bound of minimizing the cu.

• SPTH. It refers to the routing algorithm proposed in [15],
which considers both beauty and quietness along the
route. The core idea of this algorithm includes: 1) gener-
ating the top-k shortest paths; 2) picking the one with the
best sub-objective score among k paths. In our evaluation,
we use SPTH to find the route with the minimal cu.
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Intensity of solar radiation

Max0

(a) Solar radiation.

Crime risk on the road

Max0

(b) Crime risk.

Fig. 4. Distributions of cu over the road network. A darker color indicates a higher weight value for both figures.

• 2TD-AOP. It aims to find the most beautiful path in a
road network with sparse and time-dependent weights of
edge attribute (i.e., beauty) [10]. Thus, it is only used as
the comparison for crime risk maximization. In addition,
when running 2TD-AOP, cu weights are simply set to the
same at different times. In other words, the edge time-
dependence characteristic is ignored in the evaluation.

• Reversed cu. It first reverses the values of cu according
to curevi = max(cu)−cui, then find the path with the least
value of curev using Least cu. We set this algorithm to
validate whether the edge attribute minimizing algorithm
could be transferred to edge attribute maximizing algo-
rithm simply by reversing the weight of the edge attribute.

For different application scenarios, the dimensions of eval-
uation results are diverse. To compare the experimental results
more comprehensively, we adopt the ratios of each algorithm’s
path distance d(τ) and path cu cu(τ) (see Definition 5) to
that of Shortest to measure the performance. In another word,
the path distance and cu obtained by Shortest is used as the
reference. The average ratios over all tested OD pairs are
regarded as evaluation metrics, called distance ratio and cu
ratio respectively, as defined in the following equations.

distance ratio =
1
|P|

|P|

∑
i=1

d(τi)

d(τShortesti)
, (12)

cu ratio =
1
|P|

|P|

∑
i=1

cu(τi)

cu(τShortesti)
(13)

where P is the set of all tested OD pairs; τi is the path obtained
by the tested algorithm for the i-th OD pair; and τShortesti refers
to the path for the i-th OD pair obtained by the Shortest
algorithm. It is obvious that both path distance and cu ratios
found by Shortest equal 1. Moreover, the algorithm with the
distance ratio much closer to 1 and the cu ratio farther way
from 1 implies the better performance.

According to the distribution of cu and the features of
baseline algorithms, we choose Shortest, Least cu and SPTH

as baselines when minimizing cu (both the solar radiation and
the crime risk), Shortest and Reversed cu when maximizing
the solar radiation, and Shortest, Reversed cu and 2TD-AOP
when maximizing the crime risk.

3) Evaluation Environment and Parameter Settings: All the
evaluation experiments are programmed using Python 3.7 with
TensorFlow-1.4 and Keras-2.3, and running on a PC with 4
NVIDIA GeForce RTX 2080 Ti GPUs and 192 GB RAM.

In total, 5000 OD pairs with random origin and destination
nodes are generated in the road network (i.e., |P| equals 5000).
In the training stage, the number of episodes N = 50000, the
max steps in an episode T = 100, the ε ranges from 0.5 to 0
during the training process, the discount factor γ = 0.96. In the
DDQN network, the replay memory size |M| = 200000, and
minibatch size Mbatch = 64, the neural networks of Q-network
and target-network are implement using fully connected layers
with the hidden layer size of 1024, 512, 128, the synchronize
frequency for target-network ∆ = 300. In the learning process
of neural networks, the learning rate lr = 0.00001.

B. Overall Results

By aggregating the evaluation results of different application
scenarios, the overall results are shown in Fig. 5. When
minimizing the solar radiation and the crime risk, Fig. 5(a)
and Fig. 5(b) show that cuRL is generally more capable of
trading the distance against cu, compared with the baseline
algorithms. Not surprisingly, Shortest obtains the path with
the best performance in terms of the distance ratio, while Least
cu obtains the best cu ratio, since they aim to optimize either
the distance or cu. To be more specific, when minimizing the
solar radiation, cuRL finds paths with the distance ratio of
1.04 and the cu ratio of 0.95, while Least cu obtains paths
with the distance ratio of 1.11 and the cu ratio of 0.86. One
unanticipated finding is that SPTH (k = 10) performs slightly
better than cuRL in both terms of the distance ratio and the
cu ratio, with the value of 1.01 and 0.94 respectively. One
explainable reason for such phenomenon is that the top-k
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Fig. 5. Overall results of cuRL comparing with the baseline algorithms. (a), (b) show the results when minimizing cu and (c), (d) show the results when
maximizing cu.

shortest paths obtained by SPTH also include the one with the
minimal cu by accident. To verify such conclusion, we further
provide the result of minimizing the crime risk in Fig. 5(b), in
which the crime risk attribute distributes quite unevenly and
irregularly across the road network. If the value of k is larger,
SPTH will have more potential to generate paths with less
cu. However, no matter how to adjust the value of k, SPTH
cannot outperform cuRL both in distance and cu. Fig. 5(b)
shows the results when k in SPTH equals 100, where SPTH
obtains the path with the distance ratio and the cu ratio of 1.03
and 0.67, while cuRL achieves much better performance, with
the value of 1.08 and 0.34 in distance ratio and cu ratio.

When maximizing the solar radiation and the crime risk, as
evidenced by results shown in Fig. 5(c) and Fig. 5(d), again,
cuRL outperforms other baseline algorithms in most of cases.
As mentioned before, results obtained by 2TD-AOP are only
compared when maximizing the crime risk. More specifically,
when maximizing the solar radiation, cuRL achieves the
distance ratio of 1.09 and the cu ratio of 1.13, much better
than that of Reversed cu in distance ratio and slightly worse
in cu ratio. This is because that Reversed cu is proposed
to maximize cu but ignores path distance optimization. We
further examine whether Reversed cu can still obtain better
cu ratio than cuRL when maximizing the crime risk, with
the results shown in Fig. 5(d). As can be observed, Reversed
cu obtains the paths with the cu ratio of 1.16, performing the
worst compared to that of 2TD-AOP and cuRL. It is thus safe
to draw the conclusion that it is not always feasible to transfer
the minimizing problem to a maximizing one by the simple
weight-reversing in path-finding. In terms of the cu ratio, it
is expected that 2TD-AOP performs the best, with a value of
1.27, however, it fails to obtain a satisfactory result in distance
ratio. Worse still, it can only work for the case of sparse edge
attribute. In contrast, cuRL obtains the bi-criteria optimum
paths since it optimizes the distance and cu simultaneously.

In conclusion, although cuRL is inferior to some compar-
ison algorithms sometimes, it is more generic due to it is
more capable of minimizing cost or maximizing utility while
maintaining an optimized distance, and working stably under
the road network with either dense or sparse edge attributes.
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Fig. 6. Evaluation results of crime risk optimization with cuRL under
different αs in the reward function.

C. Effectiveness of Reward Design

To verify the effectiveness of the reward design in cuRL,
we examine the performance of the model under different αs
during the training process using the example of optimizing
the crime risk. As discussed in Section IV-C, the pre-training
when setting α to 0 is necessary. As can be observed in Fig. 6,
the distance ratio fluctuates within a range when α changes
and reaches a minimum under α = 0 with a value of 1.04,
indicating the pre-trained model is effective and achieves a
quite similar path distance to that of Shortest. In this case, the
model can be regarded as the shortest-path-finding one, since
only the principle objective is included in the reward function.
In addition, models with α < 0 correspond to cu minimization
while models with α > 0 correspond to cu maximization, with
the detailed analysis as follows.

When concerning the crime risk maximization scenario, as
can be seen in the right panel of Fig. 6, both distance and
cu ratios climb gradually as α increases. Compared to the cu
ratio, the distance ratio shows a smaller fluctuation, suggesting
the cu maximization is achieved without much extra cost in
path distance. Moreover, when α becomes larger than 0.5,
the cu ratio stops growing. Worse yet, the distance ratio still
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increases on the contrary. A possible explanation is that the
agent tries to earn more rcu but does not move towards the
destination node, resulting in unnecessary detours when path-
finding. In a word, the ability of maximizing cu has reached its
limit when setting α to 0.5. Thus, it is meaningless to continue
to increase α and the training can be terminated in this case.
Similar conclusions can be also drawn when concerning the
crime risk minimization scenario, with the results shown in
the left panel of Fig. 6. In this case, the cu ratio is always
smaller than 1. Similarly, the distance ratio fluctuates within
a small range under different negative αs, suggesting the cu
minimization is also accomplished at little cost of path distance
increase. What is more, the cu minimization model reaches its
limit when setting α to -2.

D. Effectiveness of State Representation

In cuRL framework, the state representation is carefully
designed so that both the principle objective and the sub-
objective can be efficiently learned and optimized. As dis-
cussed in Section IV, the state representation includes three
parts, namely coordinate state, distance state, and cu state. To
evaluate the effectiveness of each state type, an ablation study
is conducted. In addition, we further compare the performance
of state representations using latitude-longitude coordinates
and one-hot encoding.

In summary, all the compared state representation methods
are listed as follows.
• Coord. The state representation only includes the

latitude-longitude coordinate state.
• Onehot. The state is only represented by one-hot encod-

ing.
• cuRL-coord. The state representation includes the dis-

tance and cu states.
• cuRL-dis. The state representation includes the coordi-

nate and cu states.
• cuRL-cu. The state representation includes the coordinate

and distance states.
We adopt the scenario of minimizing the solar radiation

to evaluate different state representation methods. The overall
results in terms of the distance ratio and cu ratio are presented
in Tab. I. It should be noted that all results are obtained when
the parameter α in the reward function has been carefully
tuned. From the results shown in Tab. I, we can draw the
following conclusions:
• Coord can optimize neither path distance nor path

cu. As shown in Tab. I, both distance and cu ratios
of Coord are bigger than 1. This is because that Co-
ord only considers latitude-longitude coordinates and
fails to optimize the path cu. Furthermore, from the
respective of distance optimization, both Onehot and
cuRL outperform Coord. This verified our concern that
latitude-longitude coordinates are insufficient for agents
to optimize the path distance.

• Compared to Coord, Onehot achieves a better re-
sult. Although Onehot does not explicitly encode cu
and coordinate information in the state representation,
the nodes can still be well-distinguished. Specifically,

TABLE I
EVALUATION RESULTS OF DIFFERENT STATE REPRESENTATION METHODS.

cu ratio distance ratio dimension

Coord 1.061 1.062 4
Onehot 1.054 0.975 1996

cuRL-coord 1.032 1.010 24
cuRL-dis 1.062 0.976 20
cuRL-cu 1.033 1.013 12

cuRL 1.033 0.968 28

it memorizes an optimum action for each state without
learning any routing knowledge. Thus, it can be observed
that Onehot outperforms Coord and can optimize cu.
However, the efficient learning of Onehot without a
significant slowdown in convergence is computationally
impractical, due to the curse of dimensionality. In more
detail, the dimension of the state vector represented by
Onehot is extremely high, by up to 1996, while it is only
4 for Coord.

• Both coordinate and distance states are essential. On
one hand, the distance ratio of cuRL-dis is quite bigger
than 1 when the distance state is excluded. On the other
hand, the cu ratio of cuRL-coord is also bigger than 1,
indicating that the path cu is actually not optimized.

• The cu state can effectively improve cu optimization.
Comparing the results of cuRL-cu and cuRL, we can
easily find that they obtain an identical distance ratio
(i.e., 1.033), and moreover, the cu ratio of cuRL is much
smaller and less than 1 while that of cuRL-cu is bigger
than 1. Again, the solar radiation is not minimized since
the corresponding cu ratio is bigger than 1.

VI. CONCLUSIONS AND FUTURE WORK

In the paper, we investigated the routing problem with
alternative optimization criteria and proposed a generic bi-
criteria routing framework cuRL based on DRL that optimizes
both path distance and path cost/utility. Contrast experiments
and ablation study have validated the effectiveness of cuRL, as
well as its generality in various scenarios. Besides the criteria
mentioned in our evaluation, the proposed framework can
be applied to other optimization scenarios given the targeted
attribute of road segments. Therefore, cuRL could be an
ideal solution to provide diverse routing services, which is
an emerging trend for navigation platforms.

In the future, we plan to extend this work from several
aspects. Firstly, we aim to develop a routing platform on
mobile devices like mobile phones or vehicle-mounted intel-
ligent navigators to collect the datasets of multiple criteria
from the real world, and then deploy the cuRL framework
on it. Secondly, we will further explore the potential of
graph representation learning and graph convolution networks
[43, 44, 45] serving as more effective state representation
methods. Thirdly, considering that some of the alternative
criteria are time-dependent (e.g., the solar radiation, the level
of traffic congestion), this poses new challenges to the bi-
criteria optimum routing. Since DRL also shows its capability
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of modelling time-dependent characteristics [46, 23], we in-
tend to further extend cuRL to suit the optimization of time-
dependent criteria.
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